Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * EvaluationUtils.java * Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.evaluation; import java.util.ArrayList; import java.util.Random; import weka.classifiers.Classifier; import weka.core.Instance; import weka.core.Instances; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * Contains utility functions for generating lists of predictions in various * manners. * * @author Len Trigg (len@reeltwo.com) * @version $Revision$ */ public class EvaluationUtils implements RevisionHandler { /** Seed used to randomize data in cross-validation */ private int m_Seed = 1; /** Sets the seed for randomization during cross-validation */ public void setSeed(int seed) { m_Seed = seed; } /** Gets the seed for randomization during cross-validation */ public int getSeed() { return m_Seed; } /** * Generate a bunch of predictions ready for processing, by performing a * cross-validation on the supplied dataset. * * @param classifier the Classifier to evaluate * @param data the dataset * @param numFolds the number of folds in the cross-validation. * @exception Exception if an error occurs */ public ArrayList<Prediction> getCVPredictions(Classifier classifier, Instances data, int numFolds) throws Exception { ArrayList<Prediction> predictions = new ArrayList<Prediction>(); Instances runInstances = new Instances(data); Random random = new Random(m_Seed); runInstances.randomize(random); if (runInstances.classAttribute().isNominal() && (numFolds > 1)) { runInstances.stratify(numFolds); } for (int fold = 0; fold < numFolds; fold++) { Instances train = runInstances.trainCV(numFolds, fold, random); Instances test = runInstances.testCV(numFolds, fold); ArrayList<Prediction> foldPred = getTrainTestPredictions(classifier, train, test); predictions.addAll(foldPred); } return predictions; } /** * Generate a bunch of predictions ready for processing, by performing a * evaluation on a test set after training on the given training set. * * @param classifier the Classifier to evaluate * @param train the training dataset * @param test the test dataset * @exception Exception if an error occurs */ public ArrayList<Prediction> getTrainTestPredictions(Classifier classifier, Instances train, Instances test) throws Exception { classifier.buildClassifier(train); return getTestPredictions(classifier, test); } /** * Generate a bunch of predictions ready for processing, by performing a * evaluation on a test set assuming the classifier is already trained. * * @param classifier the pre-trained Classifier to evaluate * @param test the test dataset * @exception Exception if an error occurs */ public ArrayList<Prediction> getTestPredictions(Classifier classifier, Instances test) throws Exception { ArrayList<Prediction> predictions = new ArrayList<Prediction>(); for (int i = 0; i < test.numInstances(); i++) { if (!test.instance(i).classIsMissing()) { predictions.add(getPrediction(classifier, test.instance(i))); } } return predictions; } /** * Generate a single prediction for a test instance given the pre-trained * classifier. * * @param classifier the pre-trained Classifier to evaluate * @param test the test instance * @exception Exception if an error occurs */ public Prediction getPrediction(Classifier classifier, Instance test) throws Exception { double actual = test.classValue(); double[] dist = classifier.distributionForInstance(test); if (test.classAttribute().isNominal()) { return new NominalPrediction(actual, dist, test.weight()); } else { return new NumericPrediction(actual, dist[0], test.weight()); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }