Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * NaiveBayesUpdateable.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.bayes; import weka.classifiers.UpdateableClassifier; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; /** <!-- globalinfo-start --> * Class for a Naive Bayes classifier using estimator classes. This is the updateable version of NaiveBayes.<br/> * This classifier will use a default precision of 0.1 for numeric attributes when buildClassifier is called with zero training instances.<br/> * <br/> * For more information on Naive Bayes classifiers, see<br/> * <br/> * George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 338-345, 1995. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{John1995, * address = {San Mateo}, * author = {George H. John and Pat Langley}, * booktitle = {Eleventh Conference on Uncertainty in Artificial Intelligence}, * pages = {338-345}, * publisher = {Morgan Kaufmann}, * title = {Estimating Continuous Distributions in Bayesian Classifiers}, * year = {1995} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -K * Use kernel density estimator rather than normal * distribution for numeric attributes</pre> * * <pre> -D * Use supervised discretization to process numeric attributes * </pre> * * <pre> -O * Display model in old format (good when there are many classes) * </pre> * <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ */ public class NaiveBayesUpdateable extends NaiveBayes implements UpdateableClassifier { /** for serialization */ static final long serialVersionUID = -5354015843807192221L; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for a Naive Bayes classifier using estimator classes. This is the " + "updateable version of NaiveBayes.\n" + "This classifier will use a default precision of 0.1 for numeric attributes " + "when buildClassifier is called with zero training instances.\n\n" + "For more information on Naive Bayes classifiers, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { return super.getTechnicalInformation(); } /** * Set whether supervised discretization is to be used. * * @param newblah true if supervised discretization is to be used. */ public void setUseSupervisedDiscretization(boolean newblah) { if (newblah) { throw new IllegalArgumentException("Can't use discretization " + "in NaiveBayesUpdateable!"); } m_UseDiscretization = false; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String[] argv) { runClassifier(new NaiveBayesUpdateable(), argv); } }