weka.attributeSelection.ClassifierSubsetEval.java Source code

Java tutorial

Introduction

Here is the source code for weka.attributeSelection.ClassifierSubsetEval.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    ClassifierSubsetEval.java
 *    Copyright (C) 2000 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.attributeSelection;

import java.io.File;
import java.util.BitSet;
import java.util.Collections;
import java.util.Enumeration;
import java.util.List;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.evaluation.AbstractEvaluationMetric;
import weka.classifiers.evaluation.InformationRetrievalEvaluationMetric;
import weka.classifiers.rules.ZeroR;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;

/**
 <!-- globalinfo-start -->
 * Classifier subset evaluator:<br>
 * <br>
 * Evaluates attribute subsets on training data or a seperate hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes.
 * <br><br>
 <!-- globalinfo-end -->
 * 
 <!-- options-start -->
 * Valid options are: <p>
 * 
 * <pre> -B &lt;classifier&gt;
 *  class name of the classifier to use for accuracy estimation.
 *  Place any classifier options LAST on the command line
 *  following a "--". eg.:
 *   -B weka.classifiers.bayes.NaiveBayes ... -- -K
 *  (default: weka.classifiers.rules.ZeroR)</pre>
 * 
 * <pre> -T
 *  Use the training data to estimate accuracy.</pre>
 * 
 * <pre> -H &lt;filename&gt;
 *  Name of the hold out/test set to 
 *  estimate accuracy on.</pre>
 * 
 * <pre> -percentage-split
 *  Perform a percentage split on the training data.
 *  Use in conjunction with -T.</pre>
 * 
 * <pre> -P
 *  Split percentage to use (default = 90).</pre>
 * 
 * <pre> -S
 *  Random seed for percentage split (default = 1).</pre>
 * 
 * <pre> -E &lt;DEFAULT|ACC|RMSE|MAE|F-MEAS|AUC|AUPRC|CORR-COEFF&gt;
 *  Performance evaluation measure to use for selecting attributes.
 *  (Default = default: accuracy for discrete class and rmse for numeric class)</pre>
 * 
 * <pre> -IRclass &lt;label | index&gt;
 *  Optional class value (label or 1-based index) to use in conjunction with
 *  IR statistics (f-meas, auc or auprc). Omitting this option will use
 *  the class-weighted average.</pre>
 * 
 * <pre> 
 * Options specific to scheme weka.classifiers.rules.ZeroR:
 * </pre>
 * 
 * <pre> -output-debug-info
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 * <pre> -do-not-check-capabilities
 *  If set, classifier capabilities are not checked before classifier is built
 *  (use with caution).</pre>
 * 
 * <pre> -num-decimal-places
 *  The number of decimal places for the output of numbers in the model (default 2).</pre>
 * 
 * <pre> -batch-size
 *  The desired batch size for batch prediction  (default 100).</pre>
 * 
 <!-- options-end -->
 * 
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @version $Revision: 10332 $
 */
public class ClassifierSubsetEval extends HoldOutSubsetEvaluator
        implements OptionHandler, ErrorBasedMeritEvaluator {

    /** for serialization */
    static final long serialVersionUID = 7532217899385278710L;

    /** training instances */
    private Instances m_trainingInstances;

    /** class index */
    private int m_classIndex;

    /** number of attributes in the training data */
    private int m_numAttribs;

    /** number of training instances */
    // private int m_numInstances; NOT USED

    /** holds the template classifier to use for error estimates */
    private Classifier m_ClassifierTemplate = new ZeroR();

    /**
     * Holds the classifier used when evaluating single hold-out instances - this
     * is used by RaceSearch and the trained classifier may need to persist
     * between calls to that particular method.
     */
    private Classifier m_Classifier = new ZeroR();

    /** the file that containts hold out/test instances */
    private File m_holdOutFile = new File("Click to set hold out or " + "test instances");

    /** the instances to test on */
    private Instances m_holdOutInstances;

    /** evaluate on training data rather than separate hold out/test set */
    private boolean m_useTraining = true;

    /** Whether to hold out a percentage of the training data */
    protected boolean m_usePercentageSplit;

    /** Seed for randomizing prior to splitting training data */
    protected int m_seed = 1;

    /** The split to use if doing a percentage split */
    protected String m_splitPercent = "90";

    public static final int EVAL_DEFAULT = 1;
    public static final int EVAL_ACCURACY = 2;
    public static final int EVAL_RMSE = 3;
    public static final int EVAL_MAE = 4;
    public static final int EVAL_FMEASURE = 5;
    public static final int EVAL_AUC = 6;
    public static final int EVAL_AUPRC = 7;
    public static final int EVAL_CORRELATION = 8;
    public static final int EVAL_PLUGIN = 9;

    protected static List<AbstractEvaluationMetric> PLUGIN_METRICS = AbstractEvaluationMetric.getPluginMetrics();

    /** Holds all tags for metrics */
    public static final Tag[] TAGS_EVALUATION;

    static {
        int totalPluginCount = 0;
        if (PLUGIN_METRICS != null) {
            for (AbstractEvaluationMetric m : PLUGIN_METRICS) {
                totalPluginCount += m.getStatisticNames().size();
            }
        }

        TAGS_EVALUATION = new Tag[8 + totalPluginCount];
        TAGS_EVALUATION[0] = new Tag(EVAL_DEFAULT, "default",
                "Default: accuracy (discrete class); RMSE (numeric class)");
        TAGS_EVALUATION[1] = new Tag(EVAL_ACCURACY, "acc", "Accuracy (discrete class only)");
        TAGS_EVALUATION[2] = new Tag(EVAL_RMSE, "rmse", "RMSE (of the class probabilities for discrete class)");
        TAGS_EVALUATION[3] = new Tag(EVAL_MAE, "mae", "MAE (of the class probabilities for discrete class)");
        TAGS_EVALUATION[4] = new Tag(EVAL_FMEASURE, "f-meas", "F-measure (discrete class only)");
        TAGS_EVALUATION[5] = new Tag(EVAL_AUC, "auc", "AUC (area under the ROC curve - discrete class only)");
        TAGS_EVALUATION[6] = new Tag(EVAL_AUPRC, "auprc",
                "AUPRC (area under the precision-recall curve - discrete class only)");
        TAGS_EVALUATION[7] = new Tag(EVAL_CORRELATION, "corr-coeff",
                "Correlation coefficient - numeric class only");

        if (PLUGIN_METRICS != null) {
            int index = 8;
            for (AbstractEvaluationMetric m : PLUGIN_METRICS) {
                for (String stat : m.getStatisticNames()) {
                    TAGS_EVALUATION[index++] = new WrapperSubsetEval.PluginTag(index + 1, m, stat);
                }
            }
        }
    }

    /** The evaluation measure to use */
    protected Tag m_evaluationMeasure = TAGS_EVALUATION[0];

    /**
     * If >= 0, and an IR metric is being used, then evaluate with respect to this
     * class value (0-based index)
     */
    protected int m_IRClassVal = -1;

    /** User supplied option for IR class value (either name or 1-based index) */
    protected String m_IRClassValS = "";

    /**
     * Returns a string describing this attribute evaluator
     * 
     * @return a description of the evaluator suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String globalInfo() {
        return "Classifier subset evaluator:\n\nEvaluates attribute subsets on training data or a seperate "
                + "hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes.";
    }

    /**
     * Returns an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     **/
    @Override
    public Enumeration<Option> listOptions() {
        Vector<Option> newVector = new Vector<Option>(8);

        newVector.addElement(new Option("\tclass name of the classifier to use for accuracy estimation.\n"
                + "\tPlace any classifier options LAST on the command line\n" + "\tfollowing a \"--\". eg.:\n"
                + "\t\t-B weka.classifiers.bayes.NaiveBayes ... -- -K\n"
                + "\t(default: weka.classifiers.rules.ZeroR)", "B", 1, "-B <classifier>"));

        newVector.addElement(new Option("\tUse the training data to estimate" + " accuracy.", "T", 0, "-T"));

        newVector.addElement(new Option("\tName of the hold out/test set to " + "\n\testimate accuracy on.", "H", 1,
                "-H <filename>"));

        newVector.addElement(
                new Option("\tPerform a percentage split on the " + "training data.\n\tUse in conjunction with -T.",
                        "percentage-split", 0, "-percentage-split"));

        newVector.addElement(new Option("\tSplit percentage to use (default = 90).", "P", 1, "-P"));
        newVector.addElement(new Option("\tRandom seed for percentage split (default = 1).", "S", 1, "-S"));

        newVector.addElement(new Option(
                "\tPerformance evaluation measure to use for selecting attributes.\n"
                        + "\t(Default = default: accuracy for discrete class and rmse for " + "numeric class)",
                "E", 1, "-E " + Tag.toOptionList(TAGS_EVALUATION)));

        newVector.addElement(
                new Option("\tOptional class value (label or 1-based index) to use in conjunction with\n"
                        + "\tIR statistics (f-meas, auc or auprc). Omitting this option will use\n"
                        + "\tthe class-weighted average.", "IRclass", 1, "-IRclass <label | index>"));

        if ((m_ClassifierTemplate != null) && (m_ClassifierTemplate instanceof OptionHandler)) {

            newVector.addElement(new Option("", "", 0,
                    "\nOptions specific to " + "scheme " + m_ClassifierTemplate.getClass().getName() + ":"));

            newVector.addAll(Collections.list(((OptionHandler) m_ClassifierTemplate).listOptions()));
        }

        return newVector.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     <!-- options-start -->
     * Valid options are: <p>
     * 
     * <pre> -B &lt;classifier&gt;
     *  class name of the classifier to use for accuracy estimation.
     *  Place any classifier options LAST on the command line
     *  following a "--". eg.:
     *   -B weka.classifiers.bayes.NaiveBayes ... -- -K
     *  (default: weka.classifiers.rules.ZeroR)</pre>
     * 
     * <pre> -T
     *  Use the training data to estimate accuracy.</pre>
     * 
     * <pre> -H &lt;filename&gt;
     *  Name of the hold out/test set to 
     *  estimate accuracy on.</pre>
     * 
     * <pre> -percentage-split
     *  Perform a percentage split on the training data.
     *  Use in conjunction with -T.</pre>
     * 
     * <pre> -P
     *  Split percentage to use (default = 90).</pre>
     * 
     * <pre> -S
     *  Random seed for percentage split (default = 1).</pre>
     * 
     * <pre> -E &lt;DEFAULT|ACC|RMSE|MAE|F-MEAS|AUC|AUPRC|CORR-COEFF&gt;
     *  Performance evaluation measure to use for selecting attributes.
     *  (Default = default: accuracy for discrete class and rmse for numeric class)</pre>
     * 
     * <pre> -IRclass &lt;label | index&gt;
     *  Optional class value (label or 1-based index) to use in conjunction with
     *  IR statistics (f-meas, auc or auprc). Omitting this option will use
     *  the class-weighted average.</pre>
     * 
     * <pre> 
     * Options specific to scheme weka.classifiers.rules.ZeroR:
     * </pre>
     * 
     * <pre> -output-debug-info
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console</pre>
     * 
     * <pre> -do-not-check-capabilities
     *  If set, classifier capabilities are not checked before classifier is built
     *  (use with caution).</pre>
     * 
     * <pre> -num-decimal-places
     *  The number of decimal places for the output of numbers in the model (default 2).</pre>
     * 
     * <pre> -batch-size
     *  The desired batch size for batch prediction  (default 100).</pre>
     * 
     <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {
        String optionString;
        resetOptions();

        optionString = Utils.getOption('B', options);
        if (optionString.length() == 0) {
            optionString = ZeroR.class.getName();
        }
        setClassifier(AbstractClassifier.forName(optionString, Utils.partitionOptions(options)));

        optionString = Utils.getOption('H', options);
        if (optionString.length() != 0) {
            setHoldOutFile(new File(optionString));
        }

        setUsePercentageSplit(Utils.getFlag("percentage-split", options));

        optionString = Utils.getOption('P', options);
        if (optionString.length() > 0) {
            setSplitPercent(optionString);
        }

        setUseTraining(Utils.getFlag('T', options));

        optionString = Utils.getOption('E', options);
        if (optionString.length() != 0) {
            for (Tag t : TAGS_EVALUATION) {
                if (t.getIDStr().equalsIgnoreCase(optionString)) {
                    setEvaluationMeasure(new SelectedTag(t.getIDStr(), TAGS_EVALUATION));
                    break;
                }
            }
        }

        optionString = Utils.getOption("IRClass", options);
        if (optionString.length() > 0) {
            setIRClassValue(optionString);
        }

        optionString = Utils.getOption("S", options);
        if (optionString.length() > 0) {
            setSeed(Integer.parseInt(optionString));
        }
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String seedTipText() {
        return "The random seed to use for randomizing the training data "
                + "prior to performing a percentage split";
    }

    /**
     * Set the random seed used to randomize the data before performing a
     * percentage split
     * 
     * @param s the seed to use
     */
    public void setSeed(int s) {
        m_seed = s;
    }

    /**
     * Get the random seed used to randomize the data before performing a
     * percentage split
     * 
     * @return the seed to use
     */
    public int getSeed() {
        return m_seed;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String usePercentageSplitTipText() {
        return "Evaluate using a percentage split on the training data";
    }

    /**
     * Set whether to perform a percentage split on the training data for
     * evaluation
     * 
     * @param p true if a percentage split is to be performed
     */
    public void setUsePercentageSplit(boolean p) {
        m_usePercentageSplit = p;
    }

    /**
     * Get whether to perform a percentage split on the training data for
     * evaluation
     * 
     * @return true if a percentage split is to be performed
     */
    public boolean getUsePercentageSplit() {
        return m_usePercentageSplit;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String splitPercentTipText() {
        return "The percentage split to use";
    }

    /**
     * Set the split percentage to use
     * 
     * @param sp the split percentage to use
     */
    public void setSplitPercent(String sp) {
        m_splitPercent = sp;
    }

    /**
     * Get the split percentage to use
     * 
     * @return the split percentage to use
     */
    public String getSplitPercent() {
        return m_splitPercent;
    }

    /**
     * Set the class value (label or index) to use with IR metric evaluation of
     * subsets. Leaving this unset will result in the class weighted average for
     * the IR metric being used.
     * 
     * @param val the class label or 1-based index of the class label to use when
     *          evaluating subsets with an IR metric
     */
    public void setIRClassValue(String val) {
        m_IRClassValS = val;
    }

    /**
     * Get the class value (label or index) to use with IR metric evaluation of
     * subsets. Leaving this unset will result in the class weighted average for
     * the IR metric being used.
     * 
     * @return the class label or 1-based index of the class label to use when
     *         evaluating subsets with an IR metric
     */
    public String getIRClassValue() {
        return m_IRClassValS;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String IRClassValueTipText() {
        return "The class label, or 1-based index of the class label, to use "
                + "when evaluating subsets with an IR metric (such as f-measure "
                + "or AUC. Leaving this unset will result in the class frequency "
                + "weighted average of the metric being used.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String evaluationMeasureTipText() {
        return "The measure used to evaluate the performance of attribute combinations.";
    }

    /**
     * Gets the currently set performance evaluation measure used for selecting
     * attributes for the decision table
     * 
     * @return the performance evaluation measure
     */
    public SelectedTag getEvaluationMeasure() {
        return new SelectedTag(m_evaluationMeasure.getIDStr(), TAGS_EVALUATION);
    }

    /**
     * Sets the performance evaluation measure to use for selecting attributes for
     * the decision table
     * 
     * @param newMethod the new performance evaluation metric to use
     */
    public void setEvaluationMeasure(SelectedTag newMethod) {
        if (newMethod.getTags() == TAGS_EVALUATION) {
            m_evaluationMeasure = newMethod.getSelectedTag();
        }
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String classifierTipText() {
        return "Classifier to use for estimating the accuracy of subsets";
    }

    /**
     * Set the classifier to use for accuracy estimation
     * 
     * @param newClassifier the Classifier to use.
     */
    public void setClassifier(Classifier newClassifier) {
        m_ClassifierTemplate = newClassifier;
        m_Classifier = newClassifier;
    }

    /**
     * Get the classifier used as the base learner.
     * 
     * @return the classifier used as the classifier
     */
    public Classifier getClassifier() {
        return m_ClassifierTemplate;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String holdOutFileTipText() {
        return "File containing hold out/test instances.";
    }

    /**
     * Gets the file that holds hold out/test instances.
     * 
     * @return File that contains hold out instances
     */
    public File getHoldOutFile() {
        return m_holdOutFile;
    }

    /**
     * Set the file that contains hold out/test instances
     * 
     * @param h the hold out file
     */
    public void setHoldOutFile(File h) {
        m_holdOutFile = h;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String useTrainingTipText() {
        return "Use training data instead of hold out/test instances.";
    }

    /**
     * Get if training data is to be used instead of hold out/test data
     * 
     * @return true if training data is to be used instead of hold out data
     */
    public boolean getUseTraining() {
        return m_useTraining;
    }

    /**
     * Set if training data is to be used instead of hold out/test data
     * 
     * @param t true if training data is to be used instead of hold out data
     */
    public void setUseTraining(boolean t) {
        m_useTraining = t;
    }

    /**
     * Gets the current settings of ClassifierSubsetEval
     * 
     * @return an array of strings suitable for passing to setOptions()
     */
    @Override
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        if (getClassifier() != null) {
            options.add("-B");
            options.add(getClassifier().getClass().getName());
        }

        if (getUseTraining()) {
            options.add("-T");
        }
        options.add("-H");
        options.add(getHoldOutFile().getPath());

        if (getUsePercentageSplit()) {
            options.add("-percentage-split");
            options.add("-P");
            options.add(m_splitPercent);
            options.add("-S");
            options.add("" + getSeed());
        }

        options.add("-E");
        options.add(m_evaluationMeasure.getIDStr());

        if (m_IRClassValS != null && m_IRClassValS.length() > 0) {
            options.add("-IRClass");
            options.add(m_IRClassValS);
        }

        if ((m_ClassifierTemplate != null) && (m_ClassifierTemplate instanceof OptionHandler)) {
            String[] classifierOptions = ((OptionHandler) m_ClassifierTemplate).getOptions();
            if (classifierOptions.length > 0) {
                options.add("--");
                Collections.addAll(options, classifierOptions);
            }
        }

        return options.toArray(new String[0]);
    }

    /**
     * Returns the capabilities of this evaluator.
     * 
     * @return the capabilities of this evaluator
     * @see Capabilities
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result;

        if (getClassifier() == null) {
            result = super.getCapabilities();
            result.disableAll();
        } else {
            result = getClassifier().getCapabilities();
        }

        // set dependencies
        for (Capability cap : Capability.values()) {
            result.enableDependency(cap);
        }

        return result;
    }

    /**
     * Generates a attribute evaluator. Has to initialize all fields of the
     * evaluator that are not being set via options.
     * 
     * @param data set of instances serving as training data
     * @throws Exception if the evaluator has not been generated successfully
     */
    @Override
    public void buildEvaluator(Instances data) throws Exception {

        // can evaluator handle data?
        getCapabilities().testWithFail(data);

        m_trainingInstances = new Instances(data);
        m_classIndex = m_trainingInstances.classIndex();
        m_numAttribs = m_trainingInstances.numAttributes();
        // m_numInstances = m_trainingInstances.numInstances(); NOT USED

        // load the testing data
        if (!m_useTraining && (!getHoldOutFile().getPath().startsWith("Click to set"))) {
            java.io.Reader r = new java.io.BufferedReader(new java.io.FileReader(getHoldOutFile().getPath()));
            m_holdOutInstances = new Instances(r);
            m_holdOutInstances.setClassIndex(m_trainingInstances.classIndex());
            if (m_trainingInstances.equalHeaders(m_holdOutInstances) == false) {
                throw new Exception("Hold out/test set is not compatable with " + "training data.\n"
                        + m_trainingInstances.equalHeadersMsg(m_holdOutInstances));
            }
        } else if (m_usePercentageSplit) {
            int splitPercentage = 90; // default
            try {
                splitPercentage = Integer.parseInt(m_splitPercent);
            } catch (NumberFormatException n) {
            }

            m_trainingInstances.randomize(new Random(m_seed));
            int trainSize = Math.round(m_trainingInstances.numInstances() * splitPercentage / 100);
            int testSize = m_trainingInstances.numInstances() - trainSize;

            m_holdOutInstances = new Instances(m_trainingInstances, trainSize, testSize);
            m_trainingInstances = new Instances(m_trainingInstances, 0, trainSize);
        }

        if (m_IRClassValS != null && m_IRClassValS.length() > 0) {
            // try to parse as a number first
            try {
                m_IRClassVal = Integer.parseInt(m_IRClassValS);
                // make zero-based
                m_IRClassVal--;
            } catch (NumberFormatException e) {
                // now try as a named class label
                m_IRClassVal = m_trainingInstances.classAttribute().indexOfValue(m_IRClassValS);
            }
        }
    }

    /**
     * Evaluates a subset of attributes
     * 
     * @param subset a bitset representing the attribute subset to be evaluated
     * @return the error rate
     * @throws Exception if the subset could not be evaluated
     */
    @Override
    public double evaluateSubset(BitSet subset) throws Exception {
        int i, j;
        double evalMetric = 0;
        int numAttributes = 0;
        Instances trainCopy = null;
        Instances testCopy = null;
        String[] cOpts = null;
        Evaluation evaluation = null;
        if (m_ClassifierTemplate instanceof OptionHandler) {
            cOpts = ((OptionHandler) m_ClassifierTemplate).getOptions();
        }
        Classifier classifier = AbstractClassifier.forName(m_ClassifierTemplate.getClass().getName(), cOpts);

        Remove delTransform = new Remove();
        delTransform.setInvertSelection(true);
        // copy the training instances
        trainCopy = new Instances(m_trainingInstances);

        if (!m_useTraining) {
            if (m_holdOutInstances == null) {
                throw new Exception("Must specify a set of hold out/test instances " + "with -H");
            }
            // copy the test instances
            testCopy = new Instances(m_holdOutInstances);
        } else if (m_usePercentageSplit) {
            testCopy = new Instances(m_holdOutInstances);
        }

        // count attributes set in the BitSet
        for (i = 0; i < m_numAttribs; i++) {
            if (subset.get(i)) {
                numAttributes++;
            }
        }

        // set up an array of attribute indexes for the filter (+1 for the class)
        int[] featArray = new int[numAttributes + 1];

        for (i = 0, j = 0; i < m_numAttribs; i++) {
            if (subset.get(i)) {
                featArray[j++] = i;
            }
        }

        featArray[j] = m_classIndex;
        delTransform.setAttributeIndicesArray(featArray);
        delTransform.setInputFormat(trainCopy);
        trainCopy = Filter.useFilter(trainCopy, delTransform);
        if (!m_useTraining || m_usePercentageSplit) {
            testCopy = Filter.useFilter(testCopy, delTransform);
        }

        // build the classifier
        classifier.buildClassifier(trainCopy);

        evaluation = new Evaluation(trainCopy);
        if (!m_useTraining || m_usePercentageSplit) {
            evaluation.evaluateModel(classifier, testCopy);
        } else {
            evaluation.evaluateModel(classifier, trainCopy);
        }

        String metricName = null;
        String statName = null;
        AbstractEvaluationMetric pluginMetric = null;

        switch (m_evaluationMeasure.getID()) {
        case EVAL_DEFAULT:
            evalMetric = evaluation.errorRate();
            break;
        case EVAL_ACCURACY:
            evalMetric = evaluation.errorRate();
            break;
        case EVAL_RMSE:
            evalMetric = evaluation.rootMeanSquaredError();
            break;
        case EVAL_MAE:
            evalMetric = evaluation.meanAbsoluteError();
            break;
        case EVAL_FMEASURE:
            if (m_IRClassVal < 0) {
                evalMetric = evaluation.weightedFMeasure();
            } else {
                evalMetric = evaluation.fMeasure(m_IRClassVal);
            }
            break;
        case EVAL_AUC:
            if (m_IRClassVal < 0) {
                evalMetric = evaluation.weightedAreaUnderROC();
            } else {
                evalMetric = evaluation.areaUnderROC(m_IRClassVal);
            }
            break;
        case EVAL_AUPRC:
            if (m_IRClassVal < 0) {
                evalMetric = evaluation.weightedAreaUnderPRC();
            } else {
                evalMetric = evaluation.areaUnderPRC(m_IRClassVal);
            }
        case EVAL_CORRELATION:
            evalMetric = evaluation.correlationCoefficient();
            break;
        default:
            if (m_evaluationMeasure.getID() >= EVAL_PLUGIN) {
                metricName = ((WrapperSubsetEval.PluginTag) m_evaluationMeasure).getMetricName();
                statName = ((WrapperSubsetEval.PluginTag) m_evaluationMeasure).getStatisticName();
                statName = ((WrapperSubsetEval.PluginTag) m_evaluationMeasure).getStatisticName();
                pluginMetric = evaluation.getPluginMetric(metricName);
                if (pluginMetric == null) {
                    throw new Exception("Metric  " + metricName + " does not seem to be " + "available");
                }
            }

            if (pluginMetric instanceof InformationRetrievalEvaluationMetric) {
                if (m_IRClassVal < 0) {
                    evalMetric = ((InformationRetrievalEvaluationMetric) pluginMetric)
                            .getClassWeightedAverageStatistic(statName);
                } else {
                    evalMetric = ((InformationRetrievalEvaluationMetric) pluginMetric).getStatistic(statName,
                            m_IRClassVal);
                }
            } else {
                evalMetric = pluginMetric.getStatistic(statName);
            }
            break;
        }

        switch (m_evaluationMeasure.getID()) {
        case EVAL_DEFAULT:
        case EVAL_ACCURACY:
        case EVAL_RMSE:
        case EVAL_MAE:
            if (m_trainingInstances.classAttribute().isNominal() && (m_evaluationMeasure.getID() == EVAL_DEFAULT
                    || m_evaluationMeasure.getID() == EVAL_ACCURACY)) {
                evalMetric = 1 - evalMetric;
            } else {
                evalMetric = -evalMetric; // maximize
            }
            break;
        default:
            if (pluginMetric != null && !pluginMetric.statisticIsMaximisable(statName)) {
                evalMetric = -evalMetric; // maximize
            }
        }

        return evalMetric;
    }

    /**
     * Evaluates a subset of attributes with respect to a set of instances.
     * Calling this function overrides any test/hold out instances set from
     * setHoldOutFile.
     * 
     * @param subset a bitset representing the attribute subset to be evaluated
     * @param holdOut a set of instances (possibly separate and distinct from
     *          those use to build/train the evaluator) with which to evaluate the
     *          merit of the subset
     * @return the "merit" of the subset on the holdOut data
     * @throws Exception if the subset cannot be evaluated
     */
    public double evaluateSubset(BitSet subset, Instances holdOut) throws Exception {
        int i, j;
        double evalMetric = 0;
        int numAttributes = 0;
        Instances trainCopy = null;
        Instances testCopy = null;
        String[] cOpts = null;
        Evaluation evaluation = null;
        if (m_ClassifierTemplate instanceof OptionHandler) {
            cOpts = ((OptionHandler) m_ClassifierTemplate).getOptions();
        }
        Classifier classifier = AbstractClassifier.forName(m_ClassifierTemplate.getClass().getName(), cOpts);

        if (m_trainingInstances.equalHeaders(holdOut) == false) {
            throw new Exception("evaluateSubset : Incompatable instance types.\n"
                    + m_trainingInstances.equalHeadersMsg(holdOut));
        }

        Remove delTransform = new Remove();
        delTransform.setInvertSelection(true);
        // copy the training instances
        trainCopy = new Instances(m_trainingInstances);

        testCopy = new Instances(holdOut);

        // count attributes set in the BitSet
        for (i = 0; i < m_numAttribs; i++) {
            if (subset.get(i)) {
                numAttributes++;
            }
        }

        // set up an array of attribute indexes for the filter (+1 for the class)
        int[] featArray = new int[numAttributes + 1];

        for (i = 0, j = 0; i < m_numAttribs; i++) {
            if (subset.get(i)) {
                featArray[j++] = i;
            }
        }

        featArray[j] = m_classIndex;
        delTransform.setAttributeIndicesArray(featArray);
        delTransform.setInputFormat(trainCopy);
        trainCopy = Filter.useFilter(trainCopy, delTransform);
        testCopy = Filter.useFilter(testCopy, delTransform);

        // build the classifier
        classifier.buildClassifier(trainCopy);

        evaluation = new Evaluation(trainCopy);
        evaluation.evaluateModel(classifier, testCopy);

        String metricName = null;
        String statName = null;
        AbstractEvaluationMetric pluginMetric = null;

        switch (m_evaluationMeasure.getID()) {
        case EVAL_DEFAULT:
            evalMetric = evaluation.errorRate();
            break;
        case EVAL_ACCURACY:
            evalMetric = evaluation.errorRate();
            break;
        case EVAL_RMSE:
            evalMetric = evaluation.rootMeanSquaredError();
            break;
        case EVAL_MAE:
            evalMetric = evaluation.meanAbsoluteError();
            break;
        case EVAL_FMEASURE:
            if (m_IRClassVal < 0) {
                evalMetric = evaluation.weightedFMeasure();
            } else {
                evalMetric = evaluation.fMeasure(m_IRClassVal);
            }
            break;
        case EVAL_AUC:
            if (m_IRClassVal < 0) {
                evalMetric = evaluation.weightedAreaUnderROC();
            } else {
                evalMetric = evaluation.areaUnderROC(m_IRClassVal);
            }
            break;
        case EVAL_AUPRC:
            if (m_IRClassVal < 0) {
                evalMetric = evaluation.weightedAreaUnderPRC();
            } else {
                evalMetric = evaluation.areaUnderPRC(m_IRClassVal);
            }
        case EVAL_CORRELATION:
            evalMetric = evaluation.correlationCoefficient();
            break;
        default:
            if (m_evaluationMeasure.getID() >= EVAL_PLUGIN) {
                metricName = ((WrapperSubsetEval.PluginTag) m_evaluationMeasure).getMetricName();
                statName = ((WrapperSubsetEval.PluginTag) m_evaluationMeasure).getStatisticName();
                statName = ((WrapperSubsetEval.PluginTag) m_evaluationMeasure).getStatisticName();
                pluginMetric = evaluation.getPluginMetric(metricName);
                if (pluginMetric == null) {
                    throw new Exception("Metric  " + metricName + " does not seem to be " + "available");
                }
            }

            if (pluginMetric instanceof InformationRetrievalEvaluationMetric) {
                if (m_IRClassVal < 0) {
                    evalMetric = ((InformationRetrievalEvaluationMetric) pluginMetric)
                            .getClassWeightedAverageStatistic(statName);
                } else {
                    evalMetric = ((InformationRetrievalEvaluationMetric) pluginMetric).getStatistic(statName,
                            m_IRClassVal);
                }
            } else {
                evalMetric = pluginMetric.getStatistic(statName);
            }
            break;
        }

        switch (m_evaluationMeasure.getID()) {
        case EVAL_DEFAULT:
        case EVAL_ACCURACY:
        case EVAL_RMSE:
        case EVAL_MAE:
            if (m_trainingInstances.classAttribute().isNominal() && (m_evaluationMeasure.getID() == EVAL_DEFAULT
                    || m_evaluationMeasure.getID() == EVAL_ACCURACY)) {
                evalMetric = 1 - evalMetric;
            } else {
                evalMetric = -evalMetric; // maximize
            }
            break;
        default:
            if (pluginMetric != null && !pluginMetric.statisticIsMaximisable(statName)) {
                evalMetric = -evalMetric; // maximize
            }
        }

        return evalMetric;
    }

    /**
     * Evaluates a subset of attributes with respect to a single instance. Calling
     * this function overides any hold out/test instances set through
     * setHoldOutFile.
     * 
     * @param subset a bitset representing the attribute subset to be evaluated
     * @param holdOut a single instance (possibly not one of those used to
     *          build/train the evaluator) with which to evaluate the merit of the
     *          subset
     * @param retrain true if the classifier should be retrained with respect to
     *          the new subset before testing on the holdOut instance.
     * @return the "merit" of the subset on the holdOut instance
     * @throws Exception if the subset cannot be evaluated
     */
    @Override
    public double evaluateSubset(BitSet subset, Instance holdOut, boolean retrain) throws Exception {

        if (m_evaluationMeasure.getID() != EVAL_DEFAULT) {
            throw new Exception("Can only use default evaluation measure in the method");
        }
        int i, j;
        double error;
        int numAttributes = 0;
        Instances trainCopy = null;
        Instance testCopy = null;
        if (m_trainingInstances.equalHeaders(holdOut.dataset()) == false) {
            throw new Exception("evaluateSubset : Incompatable instance types.\n"
                    + m_trainingInstances.equalHeadersMsg(holdOut.dataset()));
        }

        Remove delTransform = new Remove();
        delTransform.setInvertSelection(true);
        // copy the training instances
        trainCopy = new Instances(m_trainingInstances);

        testCopy = (Instance) holdOut.copy();

        // count attributes set in the BitSet
        for (i = 0; i < m_numAttribs; i++) {
            if (subset.get(i)) {
                numAttributes++;
            }
        }

        // set up an array of attribute indexes for the filter (+1 for the class)
        int[] featArray = new int[numAttributes + 1];

        for (i = 0, j = 0; i < m_numAttribs; i++) {
            if (subset.get(i)) {
                featArray[j++] = i;
            }
        }
        featArray[j] = m_classIndex;
        delTransform.setAttributeIndicesArray(featArray);
        delTransform.setInputFormat(trainCopy);

        if (retrain) {
            trainCopy = Filter.useFilter(trainCopy, delTransform);
            // build the classifier
            m_Classifier.buildClassifier(trainCopy);
        }

        delTransform.input(testCopy);
        testCopy = delTransform.output();

        double pred;
        double[] distrib;
        distrib = m_Classifier.distributionForInstance(testCopy);
        if (m_trainingInstances.classAttribute().isNominal()) {
            pred = distrib[(int) testCopy.classValue()];
        } else {
            pred = distrib[0];
        }

        if (m_trainingInstances.classAttribute().isNominal()) {
            error = 1.0 - pred;
        } else {
            error = testCopy.classValue() - pred;
        }

        // return the negative of the error as search methods need to
        // maximize something
        return -error;
    }

    /**
     * Returns a string describing classifierSubsetEval
     * 
     * @return the description as a string
     */
    @Override
    public String toString() {
        StringBuffer text = new StringBuffer();

        if (m_trainingInstances == null) {
            text.append("\tClassifier subset evaluator has not been built yet\n");
        } else {
            text.append("\tClassifier Subset Evaluator\n");
            text.append("\tLearning scheme: " + getClassifier().getClass().getName() + "\n");
            text.append("\tScheme options: ");
            String[] classifierOptions = new String[0];

            if (m_ClassifierTemplate instanceof OptionHandler) {
                classifierOptions = ((OptionHandler) m_ClassifierTemplate).getOptions();

                for (String classifierOption : classifierOptions) {
                    text.append(classifierOption + " ");
                }
            }

            text.append("\n");
            text.append("\tHold out/test set: ");
            if (!m_useTraining) {
                if (getHoldOutFile().getPath().startsWith("Click to set")) {
                    text.append("none\n");
                } else {
                    text.append(getHoldOutFile().getPath() + '\n');
                }
            } else {
                if (m_usePercentageSplit) {
                    text.append("Percentage split: " + m_splitPercent + "\n");
                } else {
                    text.append("Training data\n");
                }
            }

            String IRClassL = "";
            if (m_IRClassVal >= 0) {
                IRClassL = "(class value: " + m_trainingInstances.classAttribute().value(m_IRClassVal) + ")";
            }
            switch (m_evaluationMeasure.getID()) {
            case EVAL_DEFAULT:
            case EVAL_ACCURACY:
                if (m_trainingInstances.attribute(m_classIndex).isNumeric()) {
                    text.append("\tSubset evaluation: RMSE\n");
                } else {
                    text.append("\tSubset evaluation: classification error\n");
                }
                break;
            case EVAL_RMSE:
                if (m_trainingInstances.attribute(m_classIndex).isNumeric()) {
                    text.append("\tSubset evaluation: RMSE\n");
                } else {
                    text.append("\tSubset evaluation: RMSE (probability estimates)\n");
                }
                break;
            case EVAL_MAE:
                if (m_trainingInstances.attribute(m_classIndex).isNumeric()) {
                    text.append("\tSubset evaluation: MAE\n");
                } else {
                    text.append("\tSubset evaluation: MAE (probability estimates)\n");
                }
                break;
            case EVAL_FMEASURE:
                text.append("\tSubset evaluation: F-measure " + (m_IRClassVal >= 0 ? IRClassL : "") + "\n");
                break;
            case EVAL_AUC:
                text.append("\tSubset evaluation: area under the ROC curve " + (m_IRClassVal >= 0 ? IRClassL : "")
                        + "\n");
                break;
            case EVAL_AUPRC:
                text.append("\tSubset evalation: area under the precision-recal curve "
                        + (m_IRClassVal >= 0 ? IRClassL : "") + "\n");
                break;
            case EVAL_CORRELATION:
                text.append("\tSubset evaluation: correlation coefficient\n");
                break;
            default:
                text.append("\tSubset evaluation: " + m_evaluationMeasure.getReadable());
                if (((WrapperSubsetEval.PluginTag) m_evaluationMeasure)
                        .getMetric() instanceof InformationRetrievalEvaluationMetric) {
                    text.append(" " + (m_IRClassVal > 0 ? IRClassL : ""));
                }
                text.append("\n");
                break;
            }
        }
        return text.toString();
    }

    /**
     * reset to defaults
     */
    protected void resetOptions() {
        m_trainingInstances = null;
        m_ClassifierTemplate = new ZeroR();
        m_holdOutFile = new File("Click to set hold out or test instances");
        m_holdOutInstances = null;
        m_useTraining = false;
        m_splitPercent = "90";
        m_usePercentageSplit = false;
        m_evaluationMeasure = TAGS_EVALUATION[0];
        m_IRClassVal = -1;
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision: 10332 $");
    }

    /**
     * Main method for testing this class.
     * 
     * @param args the options
     */
    public static void main(String[] args) {
        runEvaluator(new ClassifierSubsetEval(), args);
    }
}