weka.attributeSelection.BiNormalSeperationEval.java Source code

Java tutorial

Introduction

Here is the source code for weka.attributeSelection.BiNormalSeperationEval.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    InfoGainAttributeEval.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.attributeSelection;

import java.util.Enumeration;
import java.util.Vector;

import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.ContingencyTables;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NumericToBinary;
import org.apache.commons.math3.distribution.NormalDistribution;

/** 
 <!-- globalinfo-start -->
 * BiNormalSeperationEval:<br/>
 * <br/>
 * Evaluates the worth of an attribute by measuring the F_1(tpr) - F_1(fpr) where F_1 is the
 * z-score with respect to the class.<br/>
 * <br/>
 * <p/>
 <!-- globalinfo-end -->
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 <!-- options-end -->
 *
 * @author Anthony Rios (anthonymrios@gmail.com)
 * @version $Revision: 8034 $
 * @see Discretize
 * @see NumericToBinary
 */
public class BiNormalSeperationEval extends ASEvaluation implements AttributeEvaluator, OptionHandler {

    /** The z-score for each attribute */
    private double[] m_zScores;

    /**
     * Returns a string describing this attribute evaluator
     * @return a description of the evaluator suitable for
     * displaying in the explorer/experimenter gui
     */
    public String globalInfo() {
        return "BiNormSeperationEval:\n\nEvaluates the worth of an attribute "
                + "by taking F_1(tpr) - F_1(fpr) F_1 is the z-score and fpr and tpr\n\n"
                + " represent the true and false positive rate with respect to the class.\n";
    }

    /**
     * Constructor
     */
    public BiNormalSeperationEval() {
        System.out.println("TEST3");
        resetOptions();
        System.out.println("TEST2");
    }

    /**
       * Gets the current settings of WrapperSubsetEval.
       *
       * @return an array of strings suitable for passing to setOptions()
       */
    public String[] getOptions() {
        String[] options = new String[0];
        return options;
    }

    /**
      * Parses a given list of options. <p/>
      *
      <!-- options-start -->
      * Valid options are: <p/>
      <!-- options-end -->
      *
      * @param options the list of options as an array of strings
      * @throws Exception if an option is not supported
      */
    public void setOptions(String[] options) throws Exception {
    }

    /**
     * Returns an enumeration describing the available options.
     * @return an enumeration of all the available options.
     **/
    public Enumeration listOptions() {
        Vector newVector = new Vector(2);
        return newVector.elements();
    }

    /**
     * Returns the capabilities of this evaluator.
     *
     * @return            the capabilities of this evaluator
     * @see               Capabilities
     */
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // attributes
        result.enable(Capability.NOMINAL_ATTRIBUTES);
        result.enable(Capability.NUMERIC_ATTRIBUTES);
        result.enable(Capability.DATE_ATTRIBUTES);
        result.enable(Capability.MISSING_VALUES);

        // class
        result.enable(Capability.NOMINAL_CLASS);
        result.enable(Capability.MISSING_CLASS_VALUES);

        return result;
    }

    /**
     * Initializes an BNS attribute evaluator.
     * Discretizes all attributes that are numeric.
     *
     * @param data set of instances serving as training data 
     * @throws Exception if the evaluator has not been 
     * generated successfully
     */
    public void buildEvaluator(Instances data) throws Exception {

        // can evaluator handle data?
        getCapabilities().testWithFail(data);

        int classIndex = data.classIndex();
        int numInstances = data.numInstances();

        int numClasses = data.attribute(classIndex).numValues();

        double[] tp = new double[data.numAttributes()];
        double[] fp = new double[data.numAttributes()];
        double[] totalPos = new double[data.numAttributes()];
        double[] totalNeg = new double[data.numAttributes()];
        // Initialize values
        for (int i = 0; i < data.numAttributes(); i++) {
            tp[i] = 0;
            fp[i] = 0;
            totalPos[i] = 0;
            totalNeg[i] = 0;
        }

        Instance curInst;
        String classValue;
        double attValue;
        for (int i = 0; i < numInstances; i++) {
            curInst = data.get(i);
            classValue = curInst.stringValue(classIndex);
            for (int j = 0; j < data.numAttributes(); j++) {
                if (j != classIndex) {
                    attValue = curInst.value(j);
                    if (classValue.equals("1"))
                        totalPos[j]++;
                    if (classValue.equals("0"))
                        totalNeg[j]++;
                    if (classValue.equals("1") && attValue > 0)
                        tp[j]++;
                    if (classValue.equals("0") && attValue == 0)
                        fp[j]++;
                }
            }
        }

        double[] tpr = new double[data.numAttributes()];
        double[] fpr = new double[data.numAttributes()];
        NormalDistribution nd = new NormalDistribution();
        m_zScores = new double[data.numAttributes()];
        for (int i = 0; i < data.numAttributes(); i++) {
            tpr[i] = tp[i] / totalPos[i];
            fpr[i] = fp[i] / totalNeg[i];
            if (tp[i] == 0)
                tpr[i] = 0.00005;
            if (fp[i] == 0)
                fpr[i] = 0.00005;
            m_zScores[i] = nd.inverseCumulativeProbability(tpr[i]) - nd.inverseCumulativeProbability(fpr[i]);
        }

    }

    /**
     * Reset options to their default values
     */
    protected void resetOptions() {
    }

    /**
     * evaluates an individual attribute by measuring the amount
     * of information gained about the class given the attribute.
     *
     * @param attribute the index of the attribute to be evaluated
     * @return the info gain
     * @throws Exception if the attribute could not be evaluated
     */
    public double evaluateAttribute(int attribute) throws Exception {

        return m_zScores[attribute];
    }

    /**
     * Describe the attribute evaluator
     * @return a description of the attribute evaluator as a string
     */
    public String toString() {
        StringBuffer text = new StringBuffer();

        if (m_zScores == null) {
            text.append("Information Gain attribute evaluator has not been built");
        }

        text.append("\n");
        return text.toString();
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision: 8034 $");
    }

    // ============
    // Test method.
    // ============
    /**
     * Main method for testing this class.
     *
     * @param args the options
     */
    public static void main(String[] args) {
        runEvaluator(new InfoGainAttributeEval(), args);
    }
}