univ.bigdata.course.pagerank.JavaPageRank.java Source code

Java tutorial

Introduction

Here is the source code for univ.bigdata.course.pagerank.JavaPageRank.java

Source

package univ.bigdata.course.pagerank;

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.regex.Pattern;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.PairFunction;

import scala.Tuple2;

import com.google.common.collect.Iterables;

/**
 * Computes the PageRank of URLs from an input file. Input file should
 * be in format of:
 * URL         neighbor URL
 * URL         neighbor URL
 * URL         neighbor URL
 * ...
 * where URL and their neighbors are separated by space(s).
 *
 * This is an example implementation for learning how to use Spark. For more conventional use,
 * please refer to org.apache.spark.graphx.lib.PageRank
 */
public final class JavaPageRank {
    private static final Pattern SPACES = Pattern.compile("\\s+");

    //  static void showWarning() {
    //    String warning = "WARN: This is a naive implementation of PageRank " +
    //            "and is given as an example! \n" +
    //            "Please use the PageRank implementation found in " +
    //            "org.apache.spark.graphx.lib.PageRank for more conventional use.";
    //    System.err.println(warning);
    //  }

    private static class Sum implements Function2<Double, Double, Double> {
        @Override
        public Double call(Double a, Double b) {
            return a + b;
        }
    }

    public static void calculatePageRank(JavaRDD<String> rdd, int iteration_number) throws Exception {
        // Loads in input file. It should be in format of:
        //     URL         neighbor URL
        //     URL         neighbor URL
        //     URL         neighbor URL
        //     ...
        JavaRDD<String> lines = rdd;

        // Loads all URLs from input file and initialize their neighbors.
        JavaPairRDD<String, Iterable<String>> links = lines.mapToPair(new PairFunction<String, String, String>() {
            @Override
            public Tuple2<String, String> call(String s) {
                String[] parts = SPACES.split(s);
                return new Tuple2<>(parts[0], parts[1]);
            }
        }).distinct().groupByKey().cache();

        // Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one.
        JavaPairRDD<String, Double> ranks = links.mapValues(new Function<Iterable<String>, Double>() {
            @Override
            public Double call(Iterable<String> rs) {
                return 1.0;
            }
        });

        // Calculates and updates URL ranks continuously using PageRank algorithm.
        for (int current = 0; current < iteration_number; current++) {
            // Calculates URL contributions to the rank of other URLs.
            JavaPairRDD<String, Double> contribs = links.join(ranks).values()
                    .flatMapToPair(new PairFlatMapFunction<Tuple2<Iterable<String>, Double>, String, Double>() {
                        @Override
                        public Iterable<Tuple2<String, Double>> call(Tuple2<Iterable<String>, Double> s) {
                            int urlCount = Iterables.size(s._1);
                            List<Tuple2<String, Double>> results = new ArrayList<>();
                            for (String n : s._1) {
                                results.add(new Tuple2<>(n, s._2() / urlCount));
                            }
                            return results;
                        }
                    });

            // Re-calculates URL ranks based on neighbor contributions.
            ranks = contribs.reduceByKey(new Sum()).mapValues(new Function<Double, Double>() {
                @Override
                public Double call(Double sum) {
                    return 0.15 + sum * 0.85;
                }
            });
        }

        JavaPairRDD<Double, String> sortedRanks = ranks
                .mapToPair(new PairFunction<Tuple2<String, Double>, Double, String>() {

                    @Override
                    public Tuple2<Double, String> call(Tuple2<String, Double> t) {
                        return new Tuple2<Double, String>(t._2, t._1);
                    }
                }).sortByKey(false);

        // Collects all URL ranks and dump them to console.
        List<Tuple2<Double, String>> output = sortedRanks.takeOrdered(100, PageRankComperator.VALUE_COMP);
        for (Tuple2<?, ?> tuple : output) {
            System.out.println(tuple._2() + " has rank: " + tuple._1() + ".");
        }
    }

    static class PageRankComperator implements Comparator<Tuple2<Double, String>>, Serializable {
        private static final long serialVersionUID = 1L;

        private static final PageRankComperator VALUE_COMP = new PageRankComperator();

        @Override
        public int compare(Tuple2<Double, String> t1, Tuple2<Double, String> t2) {
            if (t1._1 == t2._1) {
                return t1._2.compareTo(t2._2);
            }
            if (t1._1 > t2._1) {
                return -1;
            } else {
                return 1;
            }
        }
    }

}