Java tutorial
/* Avner Gidron; AvnerGidron1@gmail.com; 201533262 Carmi Arlinsky; 4carmi@gmail.com; 029993904 Samah Ghazawi; idrees.samah@gmail.com; 301416897 Amir dahan; Amird1234@gmail.com; 039593801 */ package univ.bigdata.course; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.util.ArrayList; import java.util.List; import java.util.regex.Pattern; import scala.Tuple2; import univ.bigdata.course.movie.PageRankResults; import com.esotericsoftware.kryo.io.Output; import com.google.common.collect.Iterables; import comparators.PageRankComperator; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFlatMapFunction; import org.apache.spark.api.java.function.PairFunction; /** * Computes the PageRank of URLs from an input file. Input file should * be in format of: * URL neighbor URL * URL neighbor URL * URL neighbor URL * ... * where URL and their neighbors are separated by space(s). * * This is an example implementation for learning how to use Spark. For more conventional use, * please refer to org.apache.spark.graphx.lib.PageRank */ public final class JavaPageRank { private static final Pattern SPACES = Pattern.compile("\\s+"); // static void showWarning() { // String warning = "WARN: This is a naive implementation of PageRank " + // "and is given as an example! \n" + // "Please use the PageRank implementation found in " + // "org.apache.spark.graphx.lib.PageRank for more conventional use."; // System.err.println(warning); // } private static class Sum implements Function2<Double, Double, Double> { @Override public Double call(Double a, Double b) { return a + b; } } public static List<PageRankResults> Rank(JavaRDD<String> ranksrdd, int numOfIterations) throws Exception { // showWarning(); // // SparkSession spark = SparkSession // .builder() // .appName("JavaPageRank") // .getOrCreate(); // Loads in input file. It should be in format of: // URL neighbor URL // URL neighbor URL // URL neighbor URL // ... ///////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////// //change main to function that gets JavaRDD and number of iterations. ///////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////// JavaRDD<String> lines = ranksrdd; // Loads all URLs from input file and initialize their neighbors. JavaPairRDD<String, Iterable<String>> links = lines.mapToPair((PairFunction<String, String, String>) s -> { String[] parts = SPACES.split(s); return new Tuple2<>(parts[0], parts[1]); }).distinct().groupByKey().cache(); // Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one. JavaPairRDD<String, Double> ranks = links.mapValues((Function<Iterable<String>, Double>) rs -> 1.0); // Calculates and updates URL ranks continuously using PageRank algorithm. for (int current = 0; current < numOfIterations; current++) { // Calculates URL contributions to the rank of other URLs. JavaPairRDD<String, Double> contribs = links.join(ranks).values() .flatMapToPair((PairFlatMapFunction<Tuple2<Iterable<String>, Double>, String, Double>) s -> { int urlCount = Iterables.size(s._1); List<Tuple2<String, Double>> results = new ArrayList<>(); for (String n : s._1) { results.add(new Tuple2<>(n, s._2() / urlCount)); } return results; }); // Re-calculates URL ranks based on neighbor contributions. ranks = contribs.reduceByKey(new Sum()).mapValues((Function<Double, Double>) sum -> 0.15 + sum * 0.85); // List<Tuple2<String, Double>> t2 = contribs.collect(); // t2.clear(); } // List<Tuple2<String, Double>> t = ranks.collect(); // Collects all URL ranks and dump them to console. JavaRDD<PageRankResults> output = ranks.map(o -> new PageRankResults(o._1, o._2)); // List<PageRankResults> t = output.collect(); // List<PageRankResults> t1 = output.collect(); return output.collect();//.sort(new PageRankComperator()); // spark.stop(); } }