Java tutorial
/** * This file is part of the Java Machine Learning Library * * The Java Machine Learning Library is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * The Java Machine Learning Library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the Java Machine Learning Library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Copyright (c) 2006-2010, Thomas Abeel * * Project: http://java-ml.sourceforge.net/ * */ package tutorials.tools; import java.io.File; import java.util.Map; import net.sf.javaml.classification.Classifier; import net.sf.javaml.classification.evaluation.CrossValidation; import net.sf.javaml.classification.evaluation.PerformanceMeasure; import net.sf.javaml.core.Dataset; import net.sf.javaml.tools.data.FileHandler; import net.sf.javaml.tools.weka.WekaClassifier; import weka.classifiers.functions.SMO; /** * Tutorial how to use a Weka classifier in Java-ML. * * @author Thomas Abeel * */ public class TutorialWekaClassifier { public static void main(String[] args) throws Exception { /* Load data */ Dataset data = FileHandler.loadDataset(new File("devtools/data/iris.data"), 4, ","); /* Create Weka classifier */ SMO smo = new SMO(); /* Wrap Weka classifier in bridge */ Classifier javamlsmo = new WekaClassifier(smo); /* Initialize cross-validation */ CrossValidation cv = new CrossValidation(javamlsmo); /* Perform cross-validation */ Map<Object, PerformanceMeasure> pm = cv.crossValidation(data); /* Output results */ System.out.println(pm); } }