Java tutorial
/* * Copyright (c) 2015 Villu Ruusmann * * This file is part of JPMML-SkLearn * * JPMML-SkLearn is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * JPMML-SkLearn is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with JPMML-SkLearn. If not, see <http://www.gnu.org/licenses/>. */ package sklearn.svm; import java.util.List; import com.google.common.collect.Iterables; import org.dmg.pmml.MiningFunction; import org.dmg.pmml.support_vector_machine.Kernel; import org.dmg.pmml.support_vector_machine.SupportVectorMachine; import org.dmg.pmml.support_vector_machine.SupportVectorMachineModel; import org.dmg.pmml.support_vector_machine.VectorDictionary; import org.dmg.pmml.support_vector_machine.VectorInstance; import org.jpmml.converter.ModelUtil; import org.jpmml.converter.Schema; import org.jpmml.converter.ValueUtil; import org.jpmml.sklearn.ClassDictUtil; import sklearn.Regressor; abstract public class BaseLibSVMRegressor extends Regressor { public BaseLibSVMRegressor(String module, String name) { super(module, name); } @Override public int getNumberOfFeatures() { int[] shape = getSupportVectorsShape(); return shape[1]; } @Override public boolean requiresContinuousInput() { return false; } @Override public SupportVectorMachineModel encodeModel(Schema schema) { int[] shape = getSupportVectorsShape(); int numberOfVectors = shape[0]; int numberOfFeatures = shape[1]; List<Integer> support = getSupport(); List<? extends Number> supportVectors = getSupportVectors(); List<? extends Number> dualCoef = getDualCoef(); List<? extends Number> intercept = getIntercept(); VectorDictionary vectorDictionary = SupportVectorMachineUtil.encodeVectorDictionary(support, supportVectors, numberOfVectors, numberOfFeatures, schema); List<VectorInstance> vectorInstances = vectorDictionary.getVectorInstances(); Kernel kernel = SupportVectorMachineUtil.encodeKernel(getKernel(), getDegree(), getGamma(), getCoef0()); SupportVectorMachine supportVectorMachine = SupportVectorMachineUtil .encodeSupportVectorMachine(vectorInstances, dualCoef, Iterables.getOnlyElement(intercept)); SupportVectorMachineModel supportVectorMachineModel = new SupportVectorMachineModel( MiningFunction.REGRESSION, ModelUtil.createMiningSchema(schema), vectorDictionary, null) .setKernel(kernel).addSupportVectorMachines(supportVectorMachine); return supportVectorMachineModel; } public String getKernel() { return (String) get("kernel"); } public Integer getDegree() { return ValueUtil.asInteger((Number) get("degree")); } public Double getGamma() { return ValueUtil.asDouble((Number) get("_gamma")); } public Double getCoef0() { return ValueUtil.asDouble((Number) get("coef0")); } public List<Integer> getSupport() { return ValueUtil.asIntegers((List) ClassDictUtil.getArray(this, "support_")); } public List<? extends Number> getSupportVectors() { return (List) ClassDictUtil.getArray(this, "support_vectors_"); } public List<? extends Number> getDualCoef() { return (List) ClassDictUtil.getArray(this, "_dual_coef_"); } public List<? extends Number> getIntercept() { return (List) ClassDictUtil.getArray(this, "_intercept_"); } private int[] getSupportVectorsShape() { return ClassDictUtil.getShape(this, "support_vectors_", 2); } }