Java tutorial
/* * Copyright (c) 2015 Villu Ruusmann * * This file is part of JPMML-SkLearn * * JPMML-SkLearn is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * JPMML-SkLearn is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with JPMML-SkLearn. If not, see <http://www.gnu.org/licenses/>. */ package sklearn.svm; import java.util.ArrayList; import java.util.List; import com.google.common.collect.Iterables; import org.dmg.pmml.MiningFunction; import org.dmg.pmml.support_vector_machine.Kernel; import org.dmg.pmml.support_vector_machine.SupportVectorMachine; import org.dmg.pmml.support_vector_machine.SupportVectorMachineModel; import org.dmg.pmml.support_vector_machine.VectorDictionary; import org.dmg.pmml.support_vector_machine.VectorInstance; import org.jpmml.converter.ModelUtil; import org.jpmml.converter.Schema; import org.jpmml.converter.ValueUtil; import org.jpmml.sklearn.ClassDictUtil; import org.jpmml.sklearn.MatrixUtil; import sklearn.Classifier; abstract public class BaseLibSVMClassifier extends Classifier { public BaseLibSVMClassifier(String module, String name) { super(module, name); } @Override public int getNumberOfFeatures() { int[] shape = getSupportVectorsShape(); return shape[1]; } @Override public boolean requiresContinuousInput() { return false; } @Override public boolean hasProbabilityDistribution() { return false; } @Override public SupportVectorMachineModel encodeModel(Schema schema) { int[] shape = getSupportVectorsShape(); int numberOfVectors = shape[0]; int numberOfFeatures = shape[1]; List<Integer> support = getSupport(); List<? extends Number> supportVectors = getSupportVectors(); List<Integer> supportSizes = getSupportSizes(); List<? extends Number> dualCoef = getDualCoef(); List<? extends Number> intercept = getIntercept(); int[] offsets = new int[supportSizes.size() + 1]; for (int i = 0; i < supportSizes.size(); i++) { offsets[i + 1] = offsets[i] + supportSizes.get(i); } VectorDictionary vectorDictionary = SupportVectorMachineUtil.encodeVectorDictionary(support, supportVectors, numberOfVectors, numberOfFeatures, schema); List<VectorInstance> vectorInstances = vectorDictionary.getVectorInstances(); Kernel kernel = SupportVectorMachineUtil.encodeKernel(getKernel(), getDegree(), getGamma(), getCoef0()); List<SupportVectorMachine> supportVectorMachines = new ArrayList<>(); int i = 0; List<String> targetCategories = schema.getTargetCategories(); for (int first = 0; first < targetCategories.size(); first++) { for (int second = first + 1; second < targetCategories.size(); second++) { List<VectorInstance> svmVectorInstances = new ArrayList<>(); svmVectorInstances.addAll(slice(vectorInstances, offsets, first)); svmVectorInstances.addAll(slice(vectorInstances, offsets, second)); List<Number> svmDualCoef = new ArrayList<>(); svmDualCoef.addAll( slice(MatrixUtil.getRow(dualCoef, targetCategories.size() - 1, numberOfVectors, second - 1), offsets, first)); svmDualCoef.addAll( slice(MatrixUtil.getRow(dualCoef, targetCategories.size() - 1, numberOfVectors, first), offsets, second)); // LibSVM: (decisionFunction > 0 ? first : second) // PMML: (decisionFunction < 0 ? first : second) SupportVectorMachine supportVectorMachine = SupportVectorMachineUtil .encodeSupportVectorMachine(svmVectorInstances, svmDualCoef, Iterables.get(intercept, i)) .setTargetCategory(targetCategories.get(second)) .setAlternateTargetCategory(targetCategories.get(first)); supportVectorMachines.add(supportVectorMachine); i++; } } SupportVectorMachineModel supportVectorMachineModel = new SupportVectorMachineModel( MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(schema), vectorDictionary, supportVectorMachines) .setClassificationMethod(SupportVectorMachineModel.ClassificationMethod.ONE_AGAINST_ONE) .setKernel(kernel); return supportVectorMachineModel; } public String getKernel() { return (String) get("kernel"); } public Integer getDegree() { return ValueUtil.asInteger((Number) get("degree")); } public Double getGamma() { return ValueUtil.asDouble((Number) get("_gamma")); } public Double getCoef0() { return ValueUtil.asDouble((Number) get("coef0")); } public List<Integer> getSupport() { return ValueUtil.asIntegers((List) ClassDictUtil.getArray(this, "support_")); } public List<? extends Number> getSupportVectors() { return (List) ClassDictUtil.getArray(this, "support_vectors_"); } public List<Integer> getSupportSizes() { return ValueUtil.asIntegers((List) ClassDictUtil.getArray(this, "n_support_")); } public List<? extends Number> getDualCoef() { return (List) ClassDictUtil.getArray(this, "_dual_coef_"); } public List<? extends Number> getIntercept() { return (List) ClassDictUtil.getArray(this, "_intercept_"); } private int[] getSupportVectorsShape() { return ClassDictUtil.getShape(this, "support_vectors_", 2); } static private <E> List<E> slice(List<E> list, int[] offsets, int index) { return list.subList(offsets[index], offsets[index + 1]); } }