sadl.oneclassclassifier.NumericClassifierTest.java Source code

Java tutorial

Introduction

Here is the source code for sadl.oneclassclassifier.NumericClassifierTest.java

Source

/**
 * This file is part of SADL, a library for learning all sorts of (timed) automata and performing sequence-based anomaly detection.
 * Copyright (C) 2013-2016  the original author or authors.
 *
 * SADL is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
 *
 * SADL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along with SADL.  If not, see <http://www.gnu.org/licenses/>.
 */
package sadl.oneclassclassifier;

import static org.junit.Assert.assertEquals;

import java.io.IOException;
import java.net.URISyntaxException;
import java.nio.file.Path;
import java.nio.file.Paths;

import org.apache.commons.lang3.tuple.Pair;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

import jsat.clustering.SeedSelectionMethods.SeedSelection;
import jsat.clustering.kmeans.GMeans;
import jsat.clustering.kmeans.HamerlyKMeans;
import jsat.linear.distancemetrics.EuclideanDistance;
import sadl.anomalydetecion.AnomalyDetection;
import sadl.constants.DistanceMethod;
import sadl.constants.ProbabilityAggregationMethod;
import sadl.constants.ScalingMethod;
import sadl.detectors.VectorDetector;
import sadl.detectors.featureCreators.FeatureCreator;
import sadl.detectors.featureCreators.UberFeatureCreator;
import sadl.experiments.ExperimentResult;
import sadl.input.TimedInput;
import sadl.modellearner.AlergiaRedBlue;
import sadl.modellearner.PdttaLearner;
import sadl.oneclassclassifier.clustering.DbScanClassifier;
import sadl.oneclassclassifier.clustering.GMeansClassifier;
import sadl.oneclassclassifier.clustering.KMeansClassifier;
import sadl.oneclassclassifier.clustering.XMeansClassifier;
import sadl.utils.IoUtils;
import sadl.utils.MasterSeed;

public class NumericClassifierTest {

    @BeforeClass
    public static void setUpBeforeClass() throws Exception {
    }

    @AfterClass
    public static void tearDownAfterClass() throws Exception {
    }

    @Before
    public void setUp() throws Exception {
        MasterSeed.reset();
    }

    @After
    public void tearDown() throws Exception {
    }

    @Test
    public void testLibSvmClassifier() throws URISyntaxException, IOException {
        final PdttaLearner learner = new PdttaLearner(new AlergiaRedBlue(0.05, true));
        final FeatureCreator featureCreator = new UberFeatureCreator();
        final LibSvmClassifier classifier = new LibSvmClassifier(1, 0.2, 0.1, 1, 0.001, 3, ScalingMethod.NONE);
        final VectorDetector detector = new VectorDetector(ProbabilityAggregationMethod.NORMALIZED_MULTIPLY,
                featureCreator, classifier, false);
        final AnomalyDetection detection = new AnomalyDetection(detector, learner);
        final Path p = Paths.get(this.getClass().getResource("/pdtta/smac_mix_type1.txt").toURI());
        final Pair<TimedInput, TimedInput> inputSets = IoUtils.readTrainTestFile(p);
        final ExperimentResult actual = detection.trainTest(inputSets.getKey(), inputSets.getValue());
        final ExperimentResult expected = new ExperimentResult(420, 4072, 461, 47);
        assertEquals(expected, actual);
    }

    @Test
    public void testDBScanClassifier() throws URISyntaxException, IOException {
        final PdttaLearner learner = new PdttaLearner(new AlergiaRedBlue(0.05, true));
        final FeatureCreator featureCreator = new UberFeatureCreator();
        final NumericClassifier classifier = new DbScanClassifier(0.05, 5, DistanceMethod.EUCLIDIAN,
                ScalingMethod.NORMALIZE);
        final VectorDetector detector = new VectorDetector(ProbabilityAggregationMethod.NORMALIZED_MULTIPLY,
                featureCreator, classifier, false);
        final AnomalyDetection detection = new AnomalyDetection(detector, learner);
        final Path p = Paths.get(this.getClass().getResource("/pdtta/smac_mix_type1.txt").toURI());
        final Pair<TimedInput, TimedInput> inputSets = IoUtils.readTrainTestFile(p);
        final ExperimentResult actual = detection.trainTest(inputSets.getKey(), inputSets.getValue());
        final ExperimentResult expected = new ExperimentResult(467, 4356, 177, 0);
        assertEquals(expected, actual);
    }

    // @Test
    public void testSomClassifier() throws URISyntaxException, IOException {
        // The SOM method is crappy and may fail randomly because it uses an internal random object.
        // final String osName = System.getProperty("os.name");
        // if (osName.toLowerCase().contains("linux")) {
        // final PdttaLearner learner = new PdttaLearner(0.05, false);
        // final FeatureCreator featureCreator = new UberFeatureCreator();
        // final NumericClassifier classifier = new SomClassifier(ScalingMethod.NORMALIZE, 10, 10, 0.1);
        // final VectorDetector detector = new VectorDetector(ProbabilityAggregationMethod.NORMALIZED_MULTIPLY, featureCreator, classifier, false);
        // final AnomalyDetection detection = new AnomalyDetection(detector, learner);
        // final Path p = Paths.get(this.getClass().getResource("/pdtta/smac_mix_type1.txt").toURI());
        // final Pair<TimedInput, TimedInput> inputSets = IoUtils.readTrainTestFile(p);
        // final ExperimentResult actual = detection.trainTest(inputSets.getKey(), inputSets.getValue());
        // final ExperimentResult expected = new ExperimentResult(0, 4533, 0, 467);
        // assertEquals(expected, actual);
        // } else {
        // System.out.println("Did not do any test because OS is not linux and treba cannot be loaded.");
        // }
    }

    @Test
    public void testKMeansClassifier() throws URISyntaxException, IOException {
        final PdttaLearner learner = new PdttaLearner(new AlergiaRedBlue(0.05, true));
        final FeatureCreator featureCreator = new UberFeatureCreator();
        final NumericClassifier classifier = new KMeansClassifier(ScalingMethod.NORMALIZE, 10, 0.05, 0,
                DistanceMethod.EUCLIDIAN);
        final VectorDetector detector = new VectorDetector(ProbabilityAggregationMethod.NORMALIZED_MULTIPLY,
                featureCreator, classifier, false);
        final AnomalyDetection detection = new AnomalyDetection(detector, learner);
        final Path p = Paths.get(this.getClass().getResource("/pdtta/smac_mix_type1.txt").toURI());
        final Pair<TimedInput, TimedInput> inputSets = IoUtils.readTrainTestFile(p);
        final ExperimentResult actual = detection.trainTest(inputSets.getKey(), inputSets.getValue());
        final ExperimentResult expected = new ExperimentResult(467, 445, 4088, 0);
        assertEquals(expected, actual);
    }

    @Test
    public void testGMeansClassifier() throws URISyntaxException, IOException {
        final PdttaLearner learner = new PdttaLearner(new AlergiaRedBlue(0.05, true));
        final FeatureCreator featureCreator = new UberFeatureCreator();
        final NumericClassifier classifier = new GMeansClassifier(ScalingMethod.NORMALIZE, 0.05, 0,
                DistanceMethod.EUCLIDIAN);
        final VectorDetector detector = new VectorDetector(ProbabilityAggregationMethod.NORMALIZED_MULTIPLY,
                featureCreator, classifier, false);
        final AnomalyDetection detection = new AnomalyDetection(detector, learner);
        final Path p = Paths.get(this.getClass().getResource("/pdtta/smac_mix_type1.txt").toURI());
        final Pair<TimedInput, TimedInput> inputSets = IoUtils.readTrainTestFile(p);
        final ExperimentResult actual = detection.trainTest(inputSets.getKey(), inputSets.getValue());
        final ExperimentResult expected = new ExperimentResult(467, 4239, 294, 0);
        assertEquals(expected, actual);
    }

    @Test
    public void testXMeansClassifier() throws URISyntaxException, IOException {
        final PdttaLearner learner = new PdttaLearner(new AlergiaRedBlue(0.05, true));
        final FeatureCreator featureCreator = new UberFeatureCreator();
        final NumericClassifier classifier = new XMeansClassifier(ScalingMethod.NORMALIZE, 0.05, 0,
                DistanceMethod.EUCLIDIAN);
        final VectorDetector detector = new VectorDetector(ProbabilityAggregationMethod.NORMALIZED_MULTIPLY,
                featureCreator, classifier, false);
        final AnomalyDetection detection = new AnomalyDetection(detector, learner);
        final Path p = Paths.get(this.getClass().getResource("/pdtta/smac_mix_type1.txt").toURI());
        final Pair<TimedInput, TimedInput> inputSets = IoUtils.readTrainTestFile(p);
        final ExperimentResult actual = detection.trainTest(inputSets.getKey(), inputSets.getValue());
        final ExperimentResult expected = new ExperimentResult(467, 4311, 222, 0);
        assertEquals(expected, actual);
    }

    @Test
    public void testClusteredClassifier() throws URISyntaxException, IOException {
        final PdttaLearner learner = new PdttaLearner(new AlergiaRedBlue(0.05, true));
        final FeatureCreator featureCreator = new UberFeatureCreator();
        final NumericClassifier classifier = new ClusteredClassifier(ScalingMethod.NORMALIZE,
                new GMeans(new HamerlyKMeans(new EuclideanDistance(), SeedSelection.KPP, MasterSeed.nextRandom())));
        final VectorDetector detector = new VectorDetector(ProbabilityAggregationMethod.NORMALIZED_MULTIPLY,
                featureCreator, classifier, false);
        final AnomalyDetection detection = new AnomalyDetection(detector, learner);
        final Path p = Paths.get(this.getClass().getResource("/pdtta/smac_mix_type1.txt").toURI());
        final Pair<TimedInput, TimedInput> inputSets = IoUtils.readTrainTestFile(p);
        final ExperimentResult actual = detection.trainTest(inputSets.getKey(), inputSets.getValue());
        final ExperimentResult expected = new ExperimentResult(467, 0, 4533, 0);
        assertEquals(expected, actual);
    }
}