org.streaminer.stream.histogram.spdt.Histogram.java Source code

Java tutorial

Introduction

Here is the source code for org.streaminer.stream.histogram.spdt.Histogram.java

Source

/**
 * Copyright 2013 BigML
 * Licensed under the Apache License, Version 2.0
 * http://www.apache.org/licenses/LICENSE-2.0
 */
package org.streaminer.stream.histogram.spdt;

import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map.Entry;
import java.util.TreeMap;
import org.json.simple.JSONArray;

/**
 * Implements a Histogram as defined by the <a
 * href="http://jmlr.csail.mit.edu/papers/v11/ben-haim10a.html">
 * Streaming Parallel Decision Tree (SPDT)</a> algorithm. <p>The
 * Histogram consumes numeric points and maintains a running
 * approximation of the dataset using the given number of bins. The
 * methods <code>insert</code>, <code>sum</code>, and
 * <code>uniform</code> are described in detail in the SPDT paper.
 *
 * <p>The histogram has an <code>insert</code> method which uses two
 * parameters and an <code>extendedSum</code> method which add the
 * capabilities described in <a
 * href="http://research.engineering.wustl.edu/~tyrees/Publications_files/fr819-tyreeA.pdf">
 * Tyree's paper</a>. Along with Tyree's extension this histogram
 * supports inserts with categorical targets.
 *
 * @author Adam Ashenfelter (ashenfelter@bigml.com)
 */
public class Histogram<T extends Target> {

    public static final String DEFAULT_FORMAT_STRING = "#.#####";
    public static final int RESERVOIR_THRESHOLD = 256;

    /**
     * Creates an empty Histogram with the defined number of bins.
     *
     * @param maxBins the maximum number of bins for this histogram
     * @param countWeightedGaps true if count weighted gaps are desired
     * @param categories if the histogram uses categorical targets
     * then a collection of the possible category targets may be
     * provided to increase performance
     * @param groups if the histogram uses a group target
     * then a collection group target types may be provided
     * @param freezeThreshold after this # of inserts, bin locations
     * will 'freeze', increasing the performance of future inserts
     * @param reservoirType selects the bin reservoir implementation,
     * defaults to 'array' when # bins < 256 and 'tree' otherwise
     */
    public Histogram(int maxBins, boolean countWeightedGaps, Collection<Object> categories,
            Collection<TargetType> groupTypes, Long freezeThreshold, BinReservoirType reservoirType) {
        if (reservoirType == BinReservoirType.tree || (reservoirType == null && maxBins > RESERVOIR_THRESHOLD)) {
            _bins = new TreeBinReservoir<T>(maxBins, countWeightedGaps, freezeThreshold);
        } else {
            _bins = new ArrayBinReservoir<T>(maxBins, countWeightedGaps, freezeThreshold);
        }
        _decimalFormat = new DecimalFormat(DEFAULT_FORMAT_STRING);
        _missingCount = 0;
        _minimum = null;
        _maximum = null;

        if (categories != null && !categories.isEmpty()) {
            _targetType = TargetType.categorical;
            _groupTypes = null;
            _indexMap = new HashMap<Object, Integer>();
            for (Object category : categories) {
                if (_indexMap.get(category) == null) {
                    _indexMap.put(category, _indexMap.size());
                }
            }
        } else if (groupTypes != null && !groupTypes.isEmpty()) {
            _targetType = TargetType.group;
            _groupTypes = new ArrayList<TargetType>(groupTypes);
        } else {
            _groupTypes = null;
            _indexMap = null;
        }
    }

    /**
     * Creates an empty Histogram with the defined number of bins.
     *
     * @param maxBins the maximum number of bins for this histogram
     * @param countWeightedGaps true if count weighted gaps are desired
     */
    public Histogram(int maxBins, boolean countWeightedGaps) {
        this(maxBins, countWeightedGaps, null, null, null, null);
    }

    /**
     * Creates an empty Histogram with the defined number of bins.
     *
     * @param maxBins the maximum number of bins for this histogram
     */
    public Histogram(int maxBins) {
        this(maxBins, false);
    }

    /**
     * Inserts a new point into the histogram.
     * The histogram returns itself after modification.
     *
     * @param point the new point
     */
    public Histogram<T> insert(Double point) throws MixedInsertException {
        checkType(TargetType.none);
        processPointTarget(point, SimpleTarget.TARGET);
        return this;
    }

    /**
     * Inserts a new point with a numeric target into the histogram.
     * The histogram returns itself after modification.
     *
     * @param point the new point
     * @param target the numeric target
     */
    public Histogram<T> insert(Double point, double target) throws MixedInsertException {
        return insertNumeric(point, target);
    }

    /**
     * Inserts a new point with a categorical target into the histogram.
     * The histogram returns itself after modification.
     *
     * @param point the new point
     * @param target the categorical target
     */
    public Histogram<T> insert(Double point, String target) throws MixedInsertException {
        return insertCategorical(point, target);
    }

    /**
     * Inserts a new point with a group of targets into the histogram.
     * A null group target is _not_ allowed.
     * The histogram returns itself after modification.
     *
     * @param point the new point
     * @param target the group targets
     */
    public Histogram<T> insert(Double point, Collection<Object> group) throws MixedInsertException {
        return insertGroup(point, group);
    }

    /**
     * Inserts a new point with a categorical target into the histogram.
     * Null target values are allowed.
     * The histogram returns itself after modification.
     *
     * @param point the new point
     * @param target the categorical target
     */
    public Histogram<T> insertCategorical(Double point, Object target) throws MixedInsertException {
        checkType(TargetType.categorical);
        Target catTarget;
        if (_indexMap == null) {
            catTarget = new MapCategoricalTarget(target);
        } else {
            catTarget = new ArrayCategoricalTarget(_indexMap, target);
        }
        processPointTarget(point, catTarget);
        return this;
    }

    /**
     * Inserts a new point with a numeric target into the histogram.
     * Null target values are allowed.
     * The histogram returns itself after modification.
     *
     * @param point the new point
     * @param target the categorical target
     */
    public Histogram<T> insertNumeric(Double point, Double target) throws MixedInsertException {
        checkType(TargetType.numeric);
        processPointTarget(point, new NumericTarget(target));
        return this;
    }

    /**
     * Inserts a new point with a group target into the histogram.
     * A null group target is _not_ allowed.
     * The histogram returns itself after modification.
     *
     * @param point the new point
     * @param target the categorical target
     */
    public Histogram<T> insertGroup(Double point, Collection<Object> group) throws MixedInsertException {
        checkType(TargetType.group);
        if (group == null) {
            throw new MixedInsertException();
        }

        GroupTarget groupTarget = new GroupTarget(group, _groupTypes);

        if (_groupTypes == null) {
            _groupTypes = new ArrayList<TargetType>();
            for (Target t : groupTarget.getGroupTarget()) {
                _groupTypes.add(t.getTargetType());
            }
        }

        processPointTarget(point, groupTarget);
        return this;
    }

    /**
     * Inserts a new bin into the histogram.
     * The histogram returns itself after modification.
     *
     * @param bin the new bin
     */
    public Histogram<T> insertBin(Bin<T> bin) {
        if (_minimum == null || _minimum > bin.getMean()) {
            _minimum = bin.getMean();
        }
        if (_maximum == null || _maximum < bin.getMean()) {
            _maximum = bin.getMean();
        }

        clearCacheMaps();
        _bins.insert(bin);
        _bins.merge();
        return this;
    }

    /**
     * Returns the target type for the histogram
     */
    public TargetType getTargetType() {
        return _targetType;
    }

    /**
     * Returns the target types for a group histogram
     */
    public ArrayList<TargetType> getGroupTypes() {
        return _groupTypes;
    }

    /**
     * Returns the maximum number of allowed bins.
     */
    public int getMaxBins() {
        return _bins.getMaxBins();
    }

    /**
     * Returns the freeze threshold.
     */
    public Long getFreezeThreshold() {
        return _bins.getFreezeThreshold();
    }

    /**
     * Returns whether gaps are count weighted.
     */
    public boolean isCountWeightedGaps() {
        return _bins.isWeightGaps();
    }

    /**
     * Returns the categories for an array-backed
     * categorical histogram
     */
    public List<Object> getTargetCategories() {
        List<Object> categories = null;
        if (_indexMap != null) {
            Object[] catArray = new Object[_indexMap.size()];
            for (Entry<Object, Integer> entry : _indexMap.entrySet()) {
                catArray[entry.getValue()] = entry.getKey();
            }
            categories = Arrays.asList(catArray);
        }
        return categories;
    }

    /**
     * Returns the approximate number of points less than
     * <code>p</code>.
     *
     * @param p the sum point
     */
    public double sum(double p) throws SumOutOfRangeException {
        return extendedSum(p).getCount();
    }

    /**
     * Returns a <code>SumResult</code> object which contains the
     * approximate number of points less than <code>p</code> along
     * with the sum of their targets.
     *
     * @param p the sum point
     */
    public SumResult<T> extendedSum(double p) throws SumOutOfRangeException {
        SumResult<T> result;

        if (_bins.getBins().isEmpty()) {
            throw new SumOutOfRangeException("Cannot sum with an empty histogram.");
        }

        if (Double.isNaN(p)) {
            throw new SumOutOfRangeException("Cannot compute a histogram sum for NaN");
        }

        double binMax = _bins.last().getMean();

        if (p < _minimum) {
            result = new SumResult<T>(0, (T) _bins.first().getTarget().init());
        } else if (p >= _maximum) {
            result = new SumResult<T>(getTotalCount(), getTotalTargetSum());
        } else if (p == binMax) {
            Bin<T> lastBin = _bins.last();

            double totalCount = this.getTotalCount();
            double count = totalCount - (lastBin.getCount() / 2d);
            T targetSum = (T) getTotalTargetSum().sum(lastBin.getTarget().clone().mult(-0.5d));

            result = new SumResult<T>(count, targetSum);
        } else {
            T emptyTarget = (T) _bins.first().getTarget().init();
            Bin<T> bin_i = _bins.floor(p);
            if (bin_i == null) {
                bin_i = new Bin(_minimum, 0, emptyTarget.clone());
            }

            Bin<T> bin_i1 = _bins.higher(p);
            if (bin_i1 == null) {
                bin_i1 = new Bin(_maximum, 0, emptyTarget.clone());
            }

            double prevCount;
            T prevTargetSum;
            if (bin_i.getMean() == _minimum) {
                prevCount = _bins.first().getCount() / 2;
                prevTargetSum = (T) _bins.first().getTarget().clone().mult(0.5);
            } else {
                SumResult<T> prevSumResult = getPointToSumMap().get(bin_i.getMean());
                prevCount = prevSumResult.getCount();
                prevTargetSum = prevSumResult.getTargetSum();
            }

            double bDiff = p - bin_i.getMean();
            double pDiff = bin_i1.getMean() - bin_i.getMean();
            double bpRatio = bDiff / pDiff;

            NumericTarget countTarget = (NumericTarget) computeSum(bpRatio, new NumericTarget(prevCount),
                    new NumericTarget(bin_i.getCount()), new NumericTarget(bin_i1.getCount()));
            double countSum = countTarget.getSum();

            T targetSum = (T) computeSum(bpRatio, prevTargetSum, bin_i.getTarget(), bin_i1.getTarget());

            result = new SumResult<T>(countSum, targetSum);
        }

        return result;
    }

    /**
     * Returns the density estimate at point
     * <code>p</code>.
     *
     * @param p the density estimate point
     */
    public double density(double p) {
        return extendedDensity(p).getCount();
    }

    /**
     * Returns a <code>SumResult</code> object which contains the
     * density estimate at the point <code>p</code> along
     * with the density for the targets.
     *
     * @param p the density estimate point
     */
    public SumResult<T> extendedDensity(double p) {
        T emptyTarget = (T) _bins.first().getTarget().init();
        double countDensity;
        T targetDensity;

        Bin<T> exact = _bins.get(p);
        if (p < _minimum || p > _maximum) {
            countDensity = 0;
            targetDensity = (T) emptyTarget.clone();
        } else if (p == _minimum && p == _maximum) {
            countDensity = Double.POSITIVE_INFINITY;
            targetDensity = emptyTarget;
        } else if (exact != null) {
            double higher = Math.nextAfter(p, Double.POSITIVE_INFINITY);
            double lower = Math.nextAfter(p, Double.NEGATIVE_INFINITY);

            SumResult<T> lowerResult = extendedDensity(lower);
            SumResult<T> higherResult = extendedDensity(higher);
            countDensity = (lowerResult.getCount() + higherResult.getCount()) / 2;
            targetDensity = (T) lowerResult.getTargetSum().clone().sum(higherResult.getTargetSum()).mult(0.5);
        } else {
            Bin<T> lowerBin = _bins.lower(p);
            if (lowerBin == null) {
                lowerBin = new Bin(_minimum, 0, emptyTarget.clone());
            }

            Bin<T> higherBin = _bins.higher(p);
            if (higherBin == null) {
                higherBin = new Bin(_maximum, 0, emptyTarget.clone());
            }

            double bDiff = p - lowerBin.getMean();
            double pDiff = higherBin.getMean() - lowerBin.getMean();
            double bpRatio = bDiff / pDiff;

            NumericTarget countTarget = (NumericTarget) computeDensity(bpRatio, lowerBin.getMean(),
                    higherBin.getMean(), new NumericTarget(lowerBin.getCount()),
                    new NumericTarget(higherBin.getCount()));
            countDensity = countTarget.getSum();

            targetDensity = (T) computeDensity(bpRatio, lowerBin.getMean(), higherBin.getMean(),
                    lowerBin.getTarget(), higherBin.getTarget());
        }

        return new SumResult<T>(countDensity, targetDensity);
    }

    /**
     * Returns a <code>Target</code> object representing the
     * average (or expected) target value for point <code>p</code>.
     *
     * @param p the density estimate point
     */
    public T averageTarget(double p) {
        SumResult<T> density = extendedDensity(p);
        return (T) density.getTargetSum().mult(1 / density.getCount());
    }

    /**
     * Returns a list containing split points that form bins with
     * uniform membership.
     *
     * @param numberOfBins the desired number of uniform bins
     */
    public ArrayList<Double> uniform(int numberOfBins) {
        ArrayList<Double> uniformBinSplits = new ArrayList<Double>();
        double totalCount = getTotalCount();

        if (totalCount > 0) {
            double gapSize = totalCount / (double) numberOfBins;
            double minGapSize = Math.max(_bins.first().getCount(), _bins.last().getCount()) / 2;

            int splits = numberOfBins;
            if (gapSize < minGapSize) {
                splits = (int) (totalCount / minGapSize);
                gapSize = totalCount / (double) splits;
            }

            for (int i = 1; i < splits; i++) {
                double targetSum = (double) i * gapSize;
                double binSplit = findPointForSum(targetSum);
                uniformBinSplits.add(binSplit);
            }
        }
        return uniformBinSplits;
    }

    /**
     * Returns a map of percentiles and their associated locations.
     *
     * @param percentiles the desired percentiles
     */
    public HashMap<Double, Double> percentiles(Double... percentiles) {
        HashMap<Double, Double> results = new HashMap<Double, Double>();
        double totalCount = getTotalCount();

        if (totalCount > 0) {
            for (double percentile : percentiles) {
                double targetSum = (double) percentile * totalCount;
                results.put(percentile, findPointForSum(targetSum));
            }
        }
        return results;
    }

    /**
     * Merges a histogram into the current histogram.
     * The histogram returns itself after modification.
     *
     * @param histogram the histogram to be merged
     */
    public Histogram merge(Histogram<T> histogram) throws MixedInsertException {
        if (_indexMap == null && histogram._indexMap != null) {
            if (getBins().isEmpty()) {
                _indexMap = histogram._indexMap;
            } else {
                throw new MixedInsertException();
            }
        }

        if (_indexMap != null && !_indexMap.equals(histogram._indexMap)) {
            throw new MixedInsertException();
        } else if (!histogram.getBins().isEmpty()) {
            checkType(histogram.getTargetType());
            for (Bin<T> bin : histogram.getBins()) {
                Bin<T> newBin = new Bin<T>(bin);
                if (_indexMap != null) {
                    ((ArrayCategoricalTarget) newBin.getTarget()).setIndexMap(_indexMap);
                }
                _bins.insert(new Bin<T>(bin));
            }
            _bins.merge();
        }

        if (_minimum == null) {
            _minimum = histogram.getMinimum();
        } else if (histogram.getMinimum() != null) {
            _minimum = Math.min(_minimum, histogram.getMinimum());
        }

        if (_maximum == null) {
            _maximum = histogram.getMaximum();
        } else if (histogram.getMaximum() != null) {
            _maximum = Math.max(_maximum, histogram.getMaximum());
        }

        if (_missingTarget == null) {
            _missingTarget = (T) histogram.getMissingTarget();
        } else if (histogram.getMissingTarget() != null) {
            _missingTarget.sum(histogram.getMissingTarget());
        }
        _missingCount += histogram.getMissingCount();
        return this;
    }

    /**
     * Returns the total number of points in the histogram.
     */
    public double getTotalCount() {
        return _bins.getTotalCount();
    }

    /**
     * Returns the collection of bins that form the histogram.
     */
    public Collection<Bin<T>> getBins() {
        return _bins.getBins();
    }

    public JSONArray toJSON(DecimalFormat format) {
        JSONArray bins = new JSONArray();
        for (Bin<T> bin : getBins()) {
            bins.add(bin.toJSON(format));
        }
        return bins;
    }

    public String toJSONString(DecimalFormat format) {
        return toJSON(format).toJSONString();
    }

    @Override
    public String toString() {
        return toJSONString(_decimalFormat);
    }

    /*
     * Returns the total sum of the targets for each bin,
     * returns nil if there are no bins in the histogram.
     */
    public T getTotalTargetSum() {
        if (_bins.getBins().isEmpty()) {
            return null;
        } else {
            return getPointToSumMap().get(_maximum).getTargetSum();
        }
    }

    public long getMissingCount() {
        return _missingCount;
    }

    public T getMissingTarget() {
        return _missingTarget;
    }

    /**
     * Inserts count and target information for missing inputs.
     * The histogram returns itself after modification.
     *
     * @param count the number of missing values
     * @param count the target sum for the missing values
     */
    public Histogram<T> insertMissing(long count, T target) {
        if (_missingTarget == null) {
            _missingTarget = (T) target;
        } else {
            _missingTarget.sum(target);
        }
        _missingCount += count;
        return this;
    }

    /**
     * Returns the minimum value inserted into the histogram.
     */
    public Double getMinimum() {
        return _minimum;
    }

    /**
     * Returns the maximum value inserted into the histogram.
     */
    public Double getMaximum() {
        return _maximum;
    }

    /**
     * Sets the minimum input value for the histogram. This
     * method should only be used for histograms created
     * by inserting pre-existing bins.
     *
     * @param minimum the minimum value observed by the histogram
     */
    public Histogram setMinimum(Double minimum) {
        _minimum = minimum;
        return this;
    }

    /**
     * Sets the maximum input value for the histogram. This
     * method should only be used for histograms created
     * by inserting pre-existing bins.
     *
     * @param maximum the maximum value observed by the histogram
     */
    public Histogram setMaximum(Double maximum) {
        _maximum = maximum;
        return this;
    }

    private void checkType(TargetType newType) throws MixedInsertException {
        if (_targetType == null) {
            _targetType = newType;
        } else if (_targetType != newType || newType == null) {
            throw new MixedInsertException();
        }
    }

    private void processPointTarget(Double point, Target target) {
        if (point == null) {
            insertMissing(1, (T) target);
        } else {
            insertBin(new Bin(point, 1, target));
        }
    }

    private void clearCacheMaps() {
        _sumToBinMap = null;
        _pointToSumMap = null;
    }

    private void refreshCacheMaps() {
        T emptyTarget = (T) _bins.first().getTarget().init();

        _pointToSumMap = new TreeMap<Double, SumResult<T>>();
        _pointToSumMap.put(_minimum, new SumResult<T>(0d, emptyTarget));

        _sumToBinMap = new TreeMap<Double, Bin<T>>();
        Bin<T> minBin = new Bin(_minimum, 0d, emptyTarget);
        Bin<T> maxBin = new Bin(_maximum, 0d, emptyTarget);
        _sumToBinMap.put(0d, minBin);
        _sumToBinMap.put((double) getTotalCount(), maxBin);

        SumResult<T> sum = new SumResult<T>(0d, (T) emptyTarget.init());
        Bin<T> lastBin = minBin;
        for (Bin<T> bin : getBins()) {
            sum = new SumResult<T>(sum.getCount() + (bin.getCount() + lastBin.getCount()) / 2,
                    (T) sum.getTargetSum().clone().sum(bin.getTarget().clone().sum(lastBin.getTarget()).mult(0.5)));
            _sumToBinMap.put(sum.getCount(), bin);
            _pointToSumMap.put(bin.getMean(), sum);
            lastBin = bin;
        }

        SumResult<T> lastSumResult = new SumResult<T>(sum.getCount() + lastBin.getCount() / 2,
                (T) sum.getTargetSum().clone().sum(lastBin.getTarget().clone().mult(0.5)));
        _pointToSumMap.put(_maximum, lastSumResult);
    }

    private TreeMap<Double, Bin<T>> getSumToBinMap() {
        if (_sumToBinMap == null) {
            refreshCacheMaps();
        }
        return _sumToBinMap;
    }

    private TreeMap<Double, SumResult<T>> getPointToSumMap() {
        if (_pointToSumMap == null) {
            refreshCacheMaps();
        }
        return _pointToSumMap;
    }

    /*
     * Deriving the sum in terms of p, r, i, and i1 
     * starting from the Ben-Haim paper:
     * m = i + (i1 - i) * r
     * s = p + i/2 + (m + i) * r/2
     * p' = p + i/2 (our prev value includes i/2)
     * s = p' + (i + (i1 - i) * r + i) * r/2
     * s = p' + (i + r*i1 - r*i + i) * r/2
     * s = p' + r/2*i + r^2/2*i1 - r^2/2*i + r/2*i
     * s = p' + r/2*i + r/2*i - r^2/2*i + r^2/2*i1
     * s = p' + r*i - r^2/2*i + r^2/2*i1
     * s = p' + (r - r^2/2)*i + r^2/2*i1
     */
    private <U extends Target> Target computeSum(double r, U p, U i, U i1) {
        double i1Term = 0.5 * r * r;
        double iTerm = r - i1Term;
        return (U) p.clone().sum(i.clone().mult(iTerm)).sum(i1.clone().mult(i1Term));
    }

    /*
     * Finding the density starting from the sum
     * s = p + (1/2 + r - r^2/2)*i + r^2/2*i1
     * r = (x - m) / (m1 - m)
     * s_dx = i - (i1 - i) * (x - m) / (m1 - m)
     */
    private <U extends Target> Target computeDensity(double r, double m, double m1, U i, U i1) {
        return i.clone().sum(i1.clone().sum(i.clone().mult(-1)).mult(r)).mult(1 / (m1 - m));
    }

    private double findPointForSum(double s) {
        double result;
        if (s <= 0) {
            result = _minimum;
        } else if (s >= _bins.getTotalCount()) {
            result = _maximum;
        } else {
            Entry<Double, Bin<T>> sumEntry = getSumToBinMap().floorEntry(s);
            double sumP_i = sumEntry.getKey();
            Bin<T> bin_i = sumEntry.getValue();
            double p_i = bin_i.getMean();
            double m_i = bin_i.getCount();

            Double sumP_i1 = getSumToBinMap().navigableKeySet().higher(sumP_i);
            Bin<T> bin_i1 = getSumToBinMap().get(sumP_i1);
            double p_i1 = bin_i1.getMean();
            double m_i1 = bin_i1.getCount();

            double d = s - sumP_i;
            double a = m_i1 - m_i;

            double u;
            if (a == 0) {
                double offset = d / ((m_i + m_i1) / 2);
                u = p_i + (offset * (p_i1 - p_i));
            } else {
                double b = 2 * m_i;
                double c = -2 * d;
                double z = findZ(a, b, c);
                u = (p_i + (p_i1 - p_i) * z);
            }
            result = u;
        }

        return result;
    }

    private static Double findZ(double a, double b, double c) {
        Double resultRoot = null;
        ArrayList<Double> candidateRoots = solveQuadratic(a, b, c);

        for (Double candidateRoot : candidateRoots) {
            if (candidateRoot >= 0 && candidateRoot <= 1) {
                resultRoot = candidateRoot;
                break;
            }
        }

        return resultRoot;
    }

    /*
     * Simple quadratic solver - doesn't handle edge cases
     */
    private static ArrayList<Double> solveQuadratic(double a, double b, double c) {
        double discriminantSquareRoot = Math.sqrt(Math.pow(b, 2) - (4 * a * c));
        ArrayList<Double> roots = new ArrayList<Double>();
        roots.add((-b + discriminantSquareRoot) / (2 * a));
        roots.add((-b - discriminantSquareRoot) / (2 * a));
        return roots;
    }

    public enum BinReservoirType {
        tree, array
    };

    public enum TargetType {
        none, numeric, categorical, group, histogram
    };

    private TargetType _targetType;
    private final BinReservoir<T> _bins;
    private final DecimalFormat _decimalFormat;
    private ArrayList<TargetType> _groupTypes;
    private HashMap<Object, Integer> _indexMap;
    private long _missingCount;
    private T _missingTarget;
    private Double _minimum;
    private Double _maximum;
    private TreeMap<Double, Bin<T>> _sumToBinMap;
    private TreeMap<Double, SumResult<T>> _pointToSumMap;

}