Java tutorial
/* * Copyright 2009-2019 the original author or authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.springframework.integration.support.management; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Deque; import java.util.List; /** * Cumulative statistics for an event rate with higher weight given to recent data. * Clients call {@link #increment()} when a new event occurs, and then use convenience methods (e.g. {@link #getMean()}) * to retrieve estimates of the rate of event arrivals and the statistics of the series. Older values are given * exponentially smaller weight, with a decay factor determined by a duration chosen by the client. The rate measurement * weights decay in two dimensions: * <ul> * <li>in time according to the lapse period supplied: <code>weight = exp((t0-t)/T)</code> where <code>t0</code> is the * last measurement time, <code>t</code> is the current time and <code>T</code> is the lapse period)</li> * <li>per measurement according to the lapse window supplied: <code>weight = exp(-i/L)</code> where <code>L</code> is * the lapse window and <code>i</code> is the sequence number of the measurement.</li> * </ul> * For performance reasons, the calculation is performed on retrieval, * {@code window * 5} samples are retained meaning that the earliest retained value contributes just 0.5% to the * sum. * @deprecated in favor of dimensional metrics via * {@link org.springframework.integration.support.management.metrics.MeterFacade}. * Built-in metrics will be removed in a future release. * @author Dave Syer * @author Gary Russell * @author Steven Swor * */ @Deprecated public class ExponentialMovingAverageRate { private volatile double min = Double.MAX_VALUE; private volatile double max; private volatile double t0; private volatile long count; private final double lapse; private final double period; private final Deque<Long> times = new ArrayDeque<>(); private final int retention; private final int window; private final double factor; /** * @param period the period to base the rate measurement (in seconds) * @param lapsePeriod the exponential lapse rate for the rate average (in seconds) * @param window the exponential lapse window (number of measurements) */ public ExponentialMovingAverageRate(double period, double lapsePeriod, int window) { this(period, lapsePeriod, window, false); } /** * @param period the period to base the rate measurement (in seconds) * @param lapsePeriod the exponential lapse rate for the rate average (in seconds) * @param window the exponential lapse window (number of measurements) * @param millis when true, analyze the data as milliseconds instead of the native nanoseconds * @since 4.2 */ public ExponentialMovingAverageRate(double period, double lapsePeriod, int window, boolean millis) { this.lapse = lapsePeriod > 0 ? 0.001 / lapsePeriod : 0; // convert to milliseconds this.period = period * 1000; // convert to milliseconds this.window = window; this.retention = window * 5; this.factor = millis ? 1000000 : 1; this.t0 = System.nanoTime() / this.factor; } public synchronized void reset() { this.min = Double.MAX_VALUE; this.max = 0; this.count = 0; this.times.clear(); this.t0 = System.nanoTime() / this.factor; } /** * Add a new event to the series. */ public synchronized void increment() { increment(System.nanoTime()); } /** * Add a new event to the series at time t. * @param t a new event to the series (System.nanoTime()). */ public synchronized void increment(long t) { if (this.times.size() == this.retention) { this.times.poll(); } this.times.add(t); this.count++; //NOSONAR - false positive, we're synchronized } private Statistics calcStatic() { List<Long> copy; long currentCount; synchronized (this) { copy = new ArrayList<Long>(this.times); currentCount = this.count; } ExponentialMovingAverage rates = new ExponentialMovingAverage(this.window); double currentT0 = 0; double sum = 0; double weight = 0; double currentMin = this.min; double currentMax = this.max; int size = copy.size(); for (Long time : copy) { double t = time / this.factor; if (size == 1) { currentT0 = this.t0; } else if (currentT0 == 0) { currentT0 = t; continue; } double delta = t - currentT0; double value = delta > 0 ? delta / this.period : 0; if (value > currentMax) { currentMax = value; } if (value < currentMin) { currentMin = value; } double alpha = Math.exp(-delta * this.lapse); currentT0 = t; sum = alpha * sum + value; weight = alpha * weight + 1; rates.append(sum > 0 ? weight / sum : 0); } synchronized (this) { if (currentMax > this.max) { this.max = currentMax; } if (currentMin < this.min) { this.min = currentMin; } } return new Statistics(currentCount, currentMin < Double.MAX_VALUE ? currentMin : 0, currentMax, rates.getMean(), rates.getStandardDeviation()); } /** * @return the number of measurements recorded */ public int getCount() { return (int) this.count; } /** * @return the number of measurements recorded * @since 3.0 */ public long getCountLong() { return this.count; } /** * @return the time in milliseconds since the last measurement */ public double getTimeSinceLastMeasurement() { if (this.count == 0) { return 0; } double currentT0 = lastTime(); return (System.nanoTime() / this.factor - currentT0); } /** * @return the mean value */ public double getMean() { return recalcMean(calcStatic()); } /** * Decay the mean using the current time. * @param staticStats the static statistics. * @return the new mean. */ private double recalcMean(Statistics staticStats) { long currentCount = this.count; currentCount = currentCount > this.retention ? this.retention : currentCount; if (currentCount == 0) { return 0; } double currentT0 = lastTime(); double t = System.nanoTime() / this.factor; double value = t > currentT0 ? (t - currentT0) / this.period : 0; return currentCount / (currentCount / staticStats.getMean() + value); } private synchronized double lastTime() { if (this.times.size() > 0) { return this.times.peekLast() / this.factor; } else { return this.t0; } } /** * @return the approximate standard deviation */ public double getStandardDeviation() { return calcStatic().getStandardDeviation(); } /** * @return the maximum value recorded (not weighted) */ public double getMax() { double currentMin = calcStatic().getMin(); return currentMin > 0 ? 1 / currentMin : 0; } /** * @return the minimum value recorded (not weighted) */ public double getMin() { double currentMax = calcStatic().getMax(); return currentMax > 0 ? 1 / currentMax : 0; } /** * @return summary statistics (count, mean, standard deviation etc.) */ public Statistics getStatistics() { Statistics staticStats = calcStatic(); staticStats.setMean(recalcMean(staticStats)); return staticStats; } @Override public String toString() { return String.format("[%s, timeSinceLast=%f]", getStatistics(), getTimeSinceLastMeasurement()); } }