Java tutorial
/** * Copyright 2014 SAP AG * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.spotter.ext.detection.highmessaging.analyze; import java.util.Collections; import java.util.List; import org.apache.commons.math3.stat.regression.SimpleRegression; import org.spotter.ext.detection.trendlines.LogTrendLine; import org.spotter.ext.detection.trendlines.TrendLine; import org.spotter.shared.result.model.SpotterResult; public class LogAnalyzer extends Analyzer { public static final int SMOOTH_WIDE = 1; private double maxSlopeFactor; /** * * @param xValues * x values * @param yValues * y values * @param maxSlopeFactor * The factor of the slop of the second half of the measurement * data relative to the first part. */ public LogAnalyzer(SpotterResult result, List<Integer> xValues, List<Double> yValues, double maxSlopeFactor) { super(result, xValues, yValues); this.maxSlopeFactor = maxSlopeFactor; } @Override public AnalyzeResult analyze() { result.addMessage("*************************************************"); result.addMessage("Testing data for stagnating progression.."); TrendLine logTrend = new LogTrendLine(); logTrend.setValues(toDoubleArray(normalize(yValues, Collections.min(yValues))), toDoubleArray(xValues)); List<Double> smoothed = smooth(yValues, SMOOTH_WIDE); SimpleRegression first = new SimpleRegression(); first.addData( toDoubleArray(subList(xValues, 0, xValues.size() / 2), subList(smoothed, 0, xValues.size() / 2))); SimpleRegression second = new SimpleRegression(); second.addData(toDoubleArray(subList(xValues, xValues.size() / 2), subList(smoothed, xValues.size() / 2))); result.addMessage("> Slope 0%-50%: " + first.getSlope()); result.addMessage("> Slope 50%-100%: " + second.getSlope()); result.addMessage("> Threshold: " + maxSlopeFactor * first.getSlope()); if (Math.abs(second.getSlope()) < maxSlopeFactor * first.getSlope()) { result.addMessage("> detected"); return AnalyzeResult.POSITIVE; } else { result.addMessage("> not detected"); return AnalyzeResult.NEGATIVE; } } }