org.processmining.analysis.performance.PerformanceLogReplayResult.java Source code

Java tutorial

Introduction

Here is the source code for org.processmining.analysis.performance.PerformanceLogReplayResult.java

Source

/***********************************************************
 *      This software is part of the ProM package          *
 *             http://www.processmining.org/               *
 *                                                         *
 *            Copyright (c) 2003-2006 TU/e Eindhoven       *
 *                and is licensed under the                *
 *            Common Public License, Version 1.0           *
 *        by Eindhoven University of Technology            *
 *           Department of Information Systems             *
 *                 http://is.tm.tue.nl                     *
 *                                                         *
 **********************************************************/

package org.processmining.analysis.performance;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Date;
import java.util.ListIterator;

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics;
import org.apache.commons.math.stat.descriptive.SummaryStatistics;
import org.processmining.framework.log.LogReader;
import org.processmining.framework.models.ModelGraphPanel;
import org.processmining.framework.models.petrinet.PetriNet;
import org.processmining.framework.models.petrinet.algorithms.logReplay.AnalysisConfiguration;
import org.processmining.framework.models.petrinet.algorithms.logReplay.LogReplayAnalysisMethod;
import org.processmining.framework.models.petrinet.algorithms.logReplay.LogReplayAnalysisResult;

/**
 * Contains all the performance results obtained during log replay analysis. Can
 * be used to retrieve values for the performance metrics and to get extended
 * visualizations.
 * 
 * @see PerformanceMeasurer
 * 
 * @author Peter T.G. Hornix (p.t.g.hornix@student.tue.nl)
 */

public class PerformanceLogReplayResult extends LogReplayAnalysisResult {

    // DescriptiveStatistics-object in which throughput times can be stored
    private DescriptiveStatistics timeStats = DescriptiveStatistics.newInstance();
    // SummaryStatistics to obtain mean inter arrival times
    private SummaryStatistics arrivalStats = SummaryStatistics.newInstance();

    // number of log traces that can be replayed normally
    private int properFrequency;

    public PerformanceLogReplayResult(AnalysisConfiguration analysisOptions, PetriNet net, LogReader log,
            LogReplayAnalysisMethod method) {
        // call the constructor of the superclass
        super(analysisOptions, net, log, method);
    }

    /**
     * Initializes the diagnostic data structures needed to store the
     * measurements taken during the log replay analysis.
     */
    protected void initDiagnosticDataStructures() {
        replayedLog = new ExtendedLogReader(inputLogReader);
        replayedPetriNet = new ExtendedPetriNet(inputPetriNet, replayedLog.getLogTraceIDs());
    }

    // ////////////////////////////METRICS-RELATED
    // METHODS///////////////////////////

    /**
     * Calculates the average, min ad max throughput time out of the throughput
     * times of all traces in piList. Next to this, the arrival rate is
     * calculated. All metrics are based on the process instances in piList only
     * 
     * @param piList
     *            ArrayList: the process instances used
     * @param fitOption
     *            int: the fit option used (how to deal with non-conformance)
     * @throws Exception
     */
    public void calculateMetrics(ArrayList piList, int fitOption) throws Exception {
        properFrequency = 0;
        timeStats.clear();
        arrivalStats.clear();
        ArrayList arrivalDates = new ArrayList();
        ListIterator lit = piList.listIterator();
        while (lit.hasNext()) {
            ExtendedLogTrace currentTrace = (ExtendedLogTrace) lit.next();
            if (currentTrace.hasProperlyTerminated() && currentTrace.hasSuccessfullyExecuted()) {
                properFrequency++;
            }
            try {
                long tp = (currentTrace.getEndDate().getTime() - currentTrace.getBeginDate().getTime());
                if (fitOption == 0) {
                    // timeStats based on all traces
                    timeStats.addValue(tp);
                    arrivalDates.add(currentTrace.getBeginDate());
                }
                if (currentTrace.hasProperlyTerminated() && currentTrace.hasSuccessfullyExecuted()) {
                    if (fitOption == 1) {
                        // timeStats based on fitting traces only
                        timeStats.addValue(tp);
                        arrivalDates.add(currentTrace.getBeginDate());
                    }
                }
            } catch (NullPointerException ex) {
                ex.printStackTrace();
            }
        }
        Date[] arrivals = (Date[]) arrivalDates.toArray(new Date[0]);
        // make sure arrivaldates are sorted
        Arrays.sort(arrivals);
        if (arrivals.length > 1) {
            for (int i = 1; i < arrivals.length; i++) {
                long t1 = arrivals[i].getTime();
                long t2 = arrivals[i - 1].getTime();
                long iat = arrivals[i].getTime() - arrivals[i - 1].getTime();
                if (iat >= 0) {
                    arrivalStats.addValue(iat);
                }
            }
        }
    }

    /**
     * Exports the throughput times of all process instances in piList to a
     * comma-seperated text-file.
     * 
     * @param piList
     *            ArrayList: the process instances used
     * @param file
     *            File: the file to which the times are exported
     * @param divider
     *            long: the time divider used
     * @param sort
     *            String: the time sort used
     * @param fitOption
     *            int: the fit option used (how to deal with non-conformance)
     * @throws IOException
     */
    public void exportToFile(ArrayList piList, File file, long divider, String sort, int fitOption)
            throws IOException {
        Writer output = new BufferedWriter(new FileWriter(file));
        String line = "Log Trace,Throughput time (" + sort + ")\n";
        output.write(line);
        ListIterator lit = piList.listIterator();
        while (lit.hasNext()) {
            ExtendedLogTrace currentTrace = (ExtendedLogTrace) lit.next();
            try {
                double tp = (currentTrace.getEndDate().getTime() - currentTrace.getBeginDate().getTime()) * 1.0
                        / divider;
                if (fitOption == 0) {
                    // times based on all traces
                    line = currentTrace.getName() + "," + tp + "\n";
                    // write line to the file
                    output.write(line);
                }
                if (fitOption == 1 && currentTrace.hasProperlyTerminated()
                        && currentTrace.hasSuccessfullyExecuted()) {
                    // times based on fitting traces only
                    line = currentTrace.getName() + "," + tp + "\n";
                    // write line to the file
                    output.write(line);
                }
            } catch (NullPointerException npe) {
            }
        }
        // close the file
        output.close();
    }

    // ////////////////////////////GET
    // METHODS///////////////////////////////////////

    /**
     * Calculates and returns the stdev in throughput time out of the throughput
     * times in timeStats. (make sure calculateProcessMetrics() is called before
     * this method).
     * 
     * @return double
     */
    public double getStdevThroughputTime() {
        return timeStats.getStandardDeviation();
    }

    /**
     * Calculates the average of the (fastestpercentage) fast traces, the
     * (slowestPercentage) slow traces and the (100% - fastestPercentage -
     * slowestPercentage) normal speed traces and returns these averages in an
     * array, where [0]: avg fast throughput time [1]: avg slow throughput time
     * [2]: avg middle throughput time
     * 
     * @param fastestPercentage
     *            double: the percentage of measurements that is to be counted
     *            as fast
     * @param slowestPercentage
     *            double: the percentage of measurements that is to be counted
     *            as slow
     * @return double[]
     */
    public double[] getAverageTimes(double fastestPercentage, double slowestPercentage) {
        // initialize arrays
        double[] timeList = timeStats.getSortedValues();
        double[] avgTimes = new double[3];
        long total = 0;
        // obtain the number of fast , slow, normal traces
        int[] sizes = getSizes(fastestPercentage, slowestPercentage);
        int fastSize = sizes[0], slowSize = sizes[1], middleSize = sizes[2];
        for (int i = 0; i < fastSize; i++) {
            total += timeList[i];
        }
        // calculate average of the fastest traces
        double avgFastestTime = 0.0;
        if (fastSize != 0) {
            avgFastestTime = (total * 1.0) / fastSize;
        }
        // calculate average of the slowest traces
        int upperSize = timeList.length - slowSize;
        total = 0;
        for (int i = upperSize; i < timeList.length; i++) {
            total += timeList[i];
        }
        double avgSlowestTime = 0.0;
        if (slowSize > 0) {
            avgSlowestTime = (total * 1.0) / slowSize;
        }

        // calculate the middle/normal-speed traces
        total = 0;
        for (int i = fastSize; i < upperSize; i++) {
            total += timeList[i];
        }
        double avgMiddleTime = 0.0;
        if (middleSize > 0) {
            avgMiddleTime = (total * 1.0) / middleSize;
        }
        avgTimes[0] = avgFastestTime;
        avgTimes[1] = avgSlowestTime;
        avgTimes[2] = avgMiddleTime;
        return avgTimes;
    }

    /**
     * Returns an array containing the number of process instances that are
     * considered to be fast, i.e. have a low throughput time (place 0 in
     * array), the number of process instances that are slow (place 1 in array)
     * and the number of process instances that are considered to be of normal
     * speed (place 2 in array). Based on fastestPercentage, slowestPercentage
     * and timeList (thus method calculateProcessMetrics() should be called
     * before this one)
     * 
     * @param fastestPercentage
     *            double: the percentage of measurements that is to be counted
     *            as fast
     * @param slowestPercentage
     *            double: the percentage of measurements that is to be counted
     *            as slow
     * @return int[]
     */
    public int[] getSizes(double fastestPercentage, double slowestPercentage) {
        int[] sizes = new int[3];
        String sizeString;
        int length = timeStats.getValues().length;
        sizeString = Math.round((length * fastestPercentage) / 100.0) + "";
        sizes[0] = Integer.parseInt(sizeString);
        if (sizes[0] != length) {
            sizeString = Math.round((length * slowestPercentage) / 100.0) + "";
            sizes[1] = Integer.parseInt(sizeString);
            if ((sizes[0] + sizes[1]) > length) {
                // Make sure that sizes[0] + sizes[1] remains smaller than
                // the number of measurements in timeList (rounding could mess
                // this up)
                sizes[1] = length - sizes[0];
            }
        } else {
            sizes[1] = 0;
        }
        sizes[2] = length - sizes[0] - sizes[1];
        return sizes;
    }

    /**
     * Calculates and returns the arrival rate of the traces in piList
     * 
     * @return double
     */
    public double getArrivalRate() {
        double arrivalRate = 0;
        if (arrivalStats.getN() > 0 && arrivalStats.getMean() != 0) {
            // mean arrivalRate is 1 divided by the mean of the inter-arrival
            // times
            arrivalRate = 1 / arrivalStats.getMean();
        }
        return arrivalRate;
    }

    /**
     * Returns the arrival Stats of the traces in piList
     * 
     * @return SummaryStatistics
     */
    public SummaryStatistics getArrivalStats() {
        return arrivalStats;
    }

    /**
     * Returns the mean throughput time
     * 
     * @return double
     */
    public double getMeanThroughputTime() {
        return timeStats.getMean();
    }

    /**
     * Returns the minimal throughput time. Note that method
     * calculateProcessMetrics() should be called before this method.
     * 
     * @return double
     */
    public double getMinThroughputTime() {
        return timeStats.getMin();
    }

    /**
     * Returns the maximal throughput time
     * 
     * @return double
     */
    public double getMaxThroughputTime() {
        return timeStats.getMax();
    }

    /**
     * returns the number of cases that execute successfully and complete
     * properly
     * 
     * @return int
     */
    public int getProperFrequency() {
        return (properFrequency);
    }

    // ////////////////////////////GRAPPA-RELATED
    // METHODS///////////////////////////
    /**
     * Creates a visualization of the performance analysis results. Note that a
     * change of the display state by the user will have no effect before
     * calling this methods. This is intended to prevent unnecessary cloning of
     * the extended petri net, which actually delivers the custom visualization
     * of the performance analysis results.
     * 
     * @param selectedInstances
     *            The process instances that have been selected for updating the
     *            visualization.
     * @return The visualization wrapped in a ModelGraphPanel.
     */
    public ModelGraphPanel getVisualization(ArrayList selectedInstances) {
        // sets the currentlySelectedInstances attribute, which is necessary
        // because
        // the writeToDot() method has a fixed interface, though the
        // visualization should
        // be able to take them into account
        ((ExtendedPetriNet) replayedPetriNet).currentlySelectedInstances = selectedInstances;
        ModelGraphPanel myResultVisualization;
        myResultVisualization = ((ExtendedPetriNet) replayedPetriNet).getGrappaVisualization();
        return myResultVisualization;
    }

}