Java tutorial
/* Copyright 2002-2015 CS Systmes d'Information * Licensed to CS Systmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.bodies; import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; import org.apache.commons.math3.util.FastMath; import org.orekit.time.AbsoluteDate; import org.orekit.utils.Constants; /** Factory class for IAU poles. * <p>The pole models provided here come from the <a * href="http://astropedia.astrogeology.usgs.gov/alfresco/d/d/workspace/SpacesStore/28fd9e81-1964-44d6-a58b-fbbf61e64e15/WGCCRE2009reprint.pdf"> * 2009 report</a> and the <a href="http://astropedia.astrogeology.usgs.gov/alfresco/d/d/workspace/SpacesStore/04d348b0-eb2b-46a2-abe9-6effacb37763/WGCCRE-Erratum-2011reprint.pdf"> * 2011 erratum</a> of the IAU/IAG Working Group on Cartographic Coordinates * and Rotational Elements of the Planets and Satellites (WGCCRE). Note that these value * differ from earliest reports (before 2005). *</p> * @author Luc Maisonobe * @since 5.1 */ class IAUPoleFactory { /** Private constructor. * <p>This class is a utility class, it should neither have a public * nor a default constructor. This private constructor prevents * the compiler from generating one automatically.</p> */ private IAUPoleFactory() { } /** Get an IAU pole. * @param body body for which the pole is requested * @return IAU pole for the body, or dummy GCRF aligned pole * for barycenters */ public static IAUPole getIAUPole(final JPLEphemeridesLoader.EphemerisType body) { switch (body) { case SUN: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = 5715331729495237139L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { return new Vector3D(FastMath.toRadians(286.13), FastMath.toRadians(63.87)); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { return FastMath.toRadians(84.176 + 14.1844000 * d(date)); } }; case MERCURY: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = -5769710119654037007L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { final double t = t(date); return new Vector3D(FastMath.toRadians(281.0097 - 0.0328 * t), FastMath.toRadians(61.4143 - 0.0049 * t)); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { final double[] m = computeMi(date); return FastMath.toRadians(329.5469 + 6.1385025 * d(date) + 0.00993822 * FastMath.sin(m[0]) - 0.00104581 * FastMath.sin(m[1]) - 0.00010280 * FastMath.sin(m[2]) - 0.00002364 * FastMath.sin(m[3]) - 0.00000532 * FastMath.sin(m[4])); } /** Compute the Mercury angles M<sub>i</sub>. * @param date date * @return array of Mercury angles, with M<sub>i</sub> stored at index i-1 */ private double[] computeMi(final AbsoluteDate date) { final double d = d(date); return new double[] { FastMath.toRadians(174.791096 + 4.092335 * d), // M1 FastMath.toRadians(349.582171 + 8.184670 * d), // M2 FastMath.toRadians(164.373257 + 12.277005 * d), // M3 FastMath.toRadians(339.164343 + 16.369340 * d), // M4 FastMath.toRadians(153.955429 + 20.461675 * d), // M5 }; } }; case VENUS: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = 7030506277976648896L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { return new Vector3D(FastMath.toRadians(272.76), FastMath.toRadians(67.16)); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { return FastMath.toRadians(160.20 - 1.4813688 * d(date)); } }; case EARTH: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = 6912325697192667056L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { final double t = t(date); return new Vector3D(FastMath.toRadians(0.00 - 0.641 * t), FastMath.toRadians(90.00 - 0.557 * t)); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { return FastMath.toRadians(190.147 + 360.9856235 * d(date)); } }; case MOON: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = -1310155975084976571L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { final double[] e = computeEi(date); final double t = t(date); return new Vector3D( FastMath.toRadians(269.9949 + 0.0031 * t - 3.8787 * FastMath.sin(e[0]) - 0.1204 * FastMath.sin(e[1]) + 0.0700 * FastMath.sin(e[2]) - 0.0172 * FastMath.sin(e[3]) + 0.0072 * FastMath.sin(e[5]) - 0.0052 * FastMath.sin(e[9]) + 0.0043 * FastMath.sin(e[12])), FastMath.toRadians( 66.5392 + 0.0130 * t + 1.5419 * FastMath.cos(e[0]) + 0.0239 * FastMath.cos(e[1]) - 0.0278 * FastMath.cos(e[2]) + 0.0068 * FastMath.cos(e[3]) - 0.0029 * FastMath.cos(e[5]) + 0.0009 * FastMath.cos(e[6]) + 0.0008 * FastMath.cos(e[9]) - 0.0009 * FastMath.cos(e[12]))); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { final double[] e = computeEi(date); final double d = d(date); return FastMath .toRadians(38.3213 + (13.17635815 - 1.4e-12 * d) * d + 3.5610 * FastMath.sin(e[0]) + 0.1208 * FastMath.sin(e[1]) - 0.0642 * FastMath.sin(e[2]) + 0.0158 * FastMath.sin(e[3]) + 0.0252 * FastMath.sin(e[4]) - 0.0066 * FastMath.sin(e[5]) - 0.0047 * FastMath.sin(e[6]) - 0.0046 * FastMath.sin(e[7]) + 0.0028 * FastMath.sin(e[8]) + 0.0052 * FastMath.sin(e[9]) + 0.0040 * FastMath.sin(e[10]) + 0.0019 * FastMath.sin(e[11]) - 0.0044 * FastMath.sin(e[12])); } /** Compute the Moon angles E<sub>i</sub>. * @param date date * @return array of Moon angles, with E<sub>i</sub> stored at index i-1 */ private double[] computeEi(final AbsoluteDate date) { final double d = d(date); return new double[] { FastMath.toRadians(125.045 - 0.0529921 * d), // E1 FastMath.toRadians(250.089 - 0.1059842 * d), // E2 FastMath.toRadians(260.008 + 13.0120009 * d), // E3 FastMath.toRadians(176.625 + 13.3407154 * d), // E4 FastMath.toRadians(357.529 + 0.9856003 * d), // E5 FastMath.toRadians(311.589 + 26.4057084 * d), // E6 FastMath.toRadians(134.963 + 13.0649930 * d), // E7 FastMath.toRadians(276.617 + 0.3287146 * d), // E8 FastMath.toRadians(34.226 + 1.7484877 * d), // E9 FastMath.toRadians(15.134 - 0.1589763 * d), // E10 FastMath.toRadians(119.743 + 0.0036096 * d), // E11 FastMath.toRadians(239.961 + 0.1643573 * d), // E12 FastMath.toRadians(25.053 + 12.9590088 * d) // E13 }; } }; case MARS: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = 1471983418540015411L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { final double t = t(date); return new Vector3D(FastMath.toRadians(317.68143 - 0.1061 * t), FastMath.toRadians(52.88650 - 0.0609 * t)); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { return FastMath.toRadians(176.630 + 350.89198226 * d(date)); } }; case JUPITER: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = 6959753758673537524L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { final double t = t(date); final double ja = FastMath.toRadians(99.360714 + 4850.4046 * t); final double jb = FastMath.toRadians(175.895369 + 1191.9605 * t); final double jc = FastMath.toRadians(300.323162 + 262.5475 * t); final double jd = FastMath.toRadians(114.012305 + 6070.2476 * t); final double je = FastMath.toRadians(49.511251 + 64.3000 * t); return new Vector3D( FastMath.toRadians(268.056595 - 0.006499 * t + 0.000117 * FastMath.sin(ja) + 0.000938 * FastMath.sin(jb) + 0.001432 * FastMath.sin(jc) + 0.000030 * FastMath.sin(jd) + 0.002150 * FastMath.sin(je)), FastMath.toRadians(64.495303 + 0.002413 * t) + 0.000050 * FastMath.cos(ja) + 0.000404 * FastMath.cos(jb) + 0.000617 * FastMath.cos(jc) - 0.000013 * FastMath.cos(jd) + 0.000926 * FastMath.cos(je)); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { return FastMath.toRadians(284.95 + 870.5360000 * d(date)); } }; case SATURN: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = -1082211873912149774L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { final double t = t(date); return new Vector3D(FastMath.toRadians(40.589 - 0.036 * t), FastMath.toRadians(83.537 - 0.004 * t)); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { return FastMath.toRadians(38.90 + 810.7939024 * d(date)); } }; case URANUS: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = 362792230470085154L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { return new Vector3D(FastMath.toRadians(257.311), FastMath.toRadians(-15.175)); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { return FastMath.toRadians(203.81 - 501.1600928 * d(date)); } }; case NEPTUNE: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = 560614555734665287L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { final double n = FastMath.toRadians(357.85 + 52.316 * t(date)); return new Vector3D(FastMath.toRadians(299.36 + 0.70 * FastMath.sin(n)), FastMath.toRadians(43.46 - 0.51 * FastMath.cos(n))); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { final double n = FastMath.toRadians(357.85 + 52.316 * t(date)); return FastMath.toRadians(253.18 + 536.3128492 * d(date) - 0.48 * FastMath.sin(n)); } }; case PLUTO: return new IAUPole() { /** Serializable UID. */ private static final long serialVersionUID = -1277113129327018062L; /** {@inheritDoc }*/ public Vector3D getPole(final AbsoluteDate date) { return new Vector3D(FastMath.toRadians(132.993), FastMath.toRadians(-6.163)); } /** {@inheritDoc }*/ public double getPrimeMeridianAngle(final AbsoluteDate date) { return FastMath.toRadians(302.695 + 56.3625225 * d(date)); } }; default: return new GCRFAligned(); } } /** Compute the interval in julian centuries from standard epoch. * @param date date * @return interval between date and standard epoch in julian centuries */ private static double t(final AbsoluteDate date) { return date.durationFrom(AbsoluteDate.J2000_EPOCH) / Constants.JULIAN_CENTURY; } /** Compute the interval in julian days from standard epoch. * @param date date * @return interval between date and standard epoch in julian days */ private static double d(final AbsoluteDate date) { return date.durationFrom(AbsoluteDate.J2000_EPOCH) / Constants.JULIAN_DAY; } /** Default IAUPole implementation for barycenters. * <p> * This implementation defines directions such that the inertially oriented and body * oriented frames are identical and aligned with GCRF. It is used for example * to define the ICRF. * </p> */ private static class GCRFAligned implements IAUPole { /** Serializable UID. */ private static final long serialVersionUID = 20130327L; /** {@inheritDoc} */ public Vector3D getPole(final AbsoluteDate date) { return Vector3D.PLUS_K; } /** {@inheritDoc} */ public double getPrimeMeridianAngle(final AbsoluteDate date) { return 0; } } }