org.opencv.video.Video.java Source code

Java tutorial

Introduction

Here is the source code for org.opencv.video.Video.java

Source

//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.video;

import org.opencv.core.Mat;
import org.opencv.core.MatOfByte;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Rect;
import org.opencv.core.RotatedRect;
import org.opencv.core.Size;
import org.opencv.core.TermCriteria;
import org.opencv.utils.Converters;

import java.util.List;

public class Video {

    private static final int CV_LKFLOW_INITIAL_GUESSES = 4, CV_LKFLOW_GET_MIN_EIGENVALS = 8;

    public static final int OPTFLOW_USE_INITIAL_FLOW = 4, OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
            OPTFLOW_FARNEBACK_GAUSSIAN = 256, MOTION_TRANSLATION = 0, MOTION_EUCLIDEAN = 1, MOTION_AFFINE = 2,
            MOTION_HOMOGRAPHY = 3;

    //
    // C++:  Mat estimateRigidTransform(Mat src, Mat dst, bool fullAffine)
    //

    //javadoc: estimateRigidTransform(src, dst, fullAffine)
    public static Mat estimateRigidTransform(Mat src, Mat dst, boolean fullAffine) {

        Mat retVal = new Mat(estimateRigidTransform_0(src.nativeObj, dst.nativeObj, fullAffine));

        return retVal;
    }

    //
    // C++:  Ptr_BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true)
    //

    //javadoc: createBackgroundSubtractorKNN(history, dist2Threshold, detectShadows)
    public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold,
            boolean detectShadows) {

        BackgroundSubtractorKNN retVal = new BackgroundSubtractorKNN(
                createBackgroundSubtractorKNN_0(history, dist2Threshold, detectShadows));

        return retVal;
    }

    //javadoc: createBackgroundSubtractorKNN()
    public static BackgroundSubtractorKNN createBackgroundSubtractorKNN() {

        BackgroundSubtractorKNN retVal = new BackgroundSubtractorKNN(createBackgroundSubtractorKNN_1());

        return retVal;
    }

    //
    // C++:  Ptr_BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true)
    //

    //javadoc: createBackgroundSubtractorMOG2(history, varThreshold, detectShadows)
    public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold,
            boolean detectShadows) {

        BackgroundSubtractorMOG2 retVal = new BackgroundSubtractorMOG2(
                createBackgroundSubtractorMOG2_0(history, varThreshold, detectShadows));

        return retVal;
    }

    //javadoc: createBackgroundSubtractorMOG2()
    public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2() {

        BackgroundSubtractorMOG2 retVal = new BackgroundSubtractorMOG2(createBackgroundSubtractorMOG2_1());

        return retVal;
    }

    //
    // C++:  Ptr_DualTVL1OpticalFlow createOptFlow_DualTVL1()
    //

    //javadoc: createOptFlow_DualTVL1()
    public static DualTVL1OpticalFlow createOptFlow_DualTVL1() {

        DualTVL1OpticalFlow retVal = new DualTVL1OpticalFlow(createOptFlow_DualTVL1_0());

        return retVal;
    }

    //
    // C++:  RotatedRect CamShift(Mat probImage, Rect& window, TermCriteria criteria)
    //

    //javadoc: CamShift(probImage, window, criteria)
    public static RotatedRect CamShift(Mat probImage, Rect window, TermCriteria criteria) {
        double[] window_out = new double[4];
        RotatedRect retVal = new RotatedRect(CamShift_0(probImage.nativeObj, window.x, window.y, window.width,
                window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon));
        if (window != null) {
            window.x = (int) window_out[0];
            window.y = (int) window_out[1];
            window.width = (int) window_out[2];
            window.height = (int) window_out[3];
        }
        return retVal;
    }

    //
    // C++:  double findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat())
    //

    //javadoc: findTransformECC(templateImage, inputImage, warpMatrix, motionType, criteria, inputMask)
    public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType,
            TermCriteria criteria, Mat inputMask) {

        double retVal = findTransformECC_0(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj,
                motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj);

        return retVal;
    }

    //javadoc: findTransformECC(templateImage, inputImage, warpMatrix, motionType)
    public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType) {

        double retVal = findTransformECC_1(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj,
                motionType);

        return retVal;
    }

    //javadoc: findTransformECC(templateImage, inputImage, warpMatrix)
    public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix) {

        double retVal = findTransformECC_2(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj);

        return retVal;
    }

    //
    // C++:  int buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true)
    //

    //javadoc: buildOpticalFlowPyramid(img, pyramid, winSize, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage)
    public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel,
            boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage) {
        Mat pyramid_mat = new Mat();
        int retVal = buildOpticalFlowPyramid_0(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height,
                maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage);
        Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
        pyramid_mat.release();
        return retVal;
    }

    //javadoc: buildOpticalFlowPyramid(img, pyramid, winSize, maxLevel)
    public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel) {
        Mat pyramid_mat = new Mat();
        int retVal = buildOpticalFlowPyramid_1(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height,
                maxLevel);
        Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
        pyramid_mat.release();
        return retVal;
    }

    //
    // C++:  int meanShift(Mat probImage, Rect& window, TermCriteria criteria)
    //

    //javadoc: meanShift(probImage, window, criteria)
    public static int meanShift(Mat probImage, Rect window, TermCriteria criteria) {
        double[] window_out = new double[4];
        int retVal = meanShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out,
                criteria.type, criteria.maxCount, criteria.epsilon);
        if (window != null) {
            window.x = (int) window_out[0];
            window.y = (int) window_out[1];
            window.width = (int) window_out[2];
            window.height = (int) window_out[3];
        }
        return retVal;
    }

    //
    // C++:  void calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags)
    //

    //javadoc: calcOpticalFlowFarneback(prev, next, flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags)
    public static void calcOpticalFlowFarneback(Mat prev, Mat next, Mat flow, double pyr_scale, int levels,
            int winsize, int iterations, int poly_n, double poly_sigma, int flags) {

        calcOpticalFlowFarneback_0(prev.nativeObj, next.nativeObj, flow.nativeObj, pyr_scale, levels, winsize,
                iterations, poly_n, poly_sigma, flags);

        return;
    }

    //
    // C++:  void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4)
    //

    //javadoc: calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err, winSize, maxLevel, criteria, flags, minEigThreshold)
    public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts,
            MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags,
            double minEigThreshold) {
        Mat prevPts_mat = prevPts;
        Mat nextPts_mat = nextPts;
        Mat status_mat = status;
        Mat err_mat = err;
        calcOpticalFlowPyrLK_0(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj,
                status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type,
                criteria.maxCount, criteria.epsilon, flags, minEigThreshold);

        return;
    }

    //javadoc: calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err, winSize, maxLevel)
    public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts,
            MatOfByte status, MatOfFloat err, Size winSize, int maxLevel) {
        Mat prevPts_mat = prevPts;
        Mat nextPts_mat = nextPts;
        Mat status_mat = status;
        Mat err_mat = err;
        calcOpticalFlowPyrLK_1(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj,
                status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel);

        return;
    }

    //javadoc: calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err)
    public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts,
            MatOfByte status, MatOfFloat err) {
        Mat prevPts_mat = prevPts;
        Mat nextPts_mat = nextPts;
        Mat status_mat = status;
        Mat err_mat = err;
        calcOpticalFlowPyrLK_2(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj,
                status_mat.nativeObj, err_mat.nativeObj);

        return;
    }

    // C++:  Mat estimateRigidTransform(Mat src, Mat dst, bool fullAffine)
    private static native long estimateRigidTransform_0(long src_nativeObj, long dst_nativeObj, boolean fullAffine);

    // C++:  Ptr_BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true)
    private static native long createBackgroundSubtractorKNN_0(int history, double dist2Threshold,
            boolean detectShadows);

    private static native long createBackgroundSubtractorKNN_1();

    // C++:  Ptr_BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true)
    private static native long createBackgroundSubtractorMOG2_0(int history, double varThreshold,
            boolean detectShadows);

    private static native long createBackgroundSubtractorMOG2_1();

    // C++:  Ptr_DualTVL1OpticalFlow createOptFlow_DualTVL1()
    private static native long createOptFlow_DualTVL1_0();

    // C++:  RotatedRect CamShift(Mat probImage, Rect& window, TermCriteria criteria)
    private static native double[] CamShift_0(long probImage_nativeObj, int window_x, int window_y,
            int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount,
            double criteria_epsilon);

    // C++:  double findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat())
    private static native double findTransformECC_0(long templateImage_nativeObj, long inputImage_nativeObj,
            long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount,
            double criteria_epsilon, long inputMask_nativeObj);

    private static native double findTransformECC_1(long templateImage_nativeObj, long inputImage_nativeObj,
            long warpMatrix_nativeObj, int motionType);

    private static native double findTransformECC_2(long templateImage_nativeObj, long inputImage_nativeObj,
            long warpMatrix_nativeObj);

    // C++:  int buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true)
    private static native int buildOpticalFlowPyramid_0(long img_nativeObj, long pyramid_mat_nativeObj,
            double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder,
            int derivBorder, boolean tryReuseInputImage);

    private static native int buildOpticalFlowPyramid_1(long img_nativeObj, long pyramid_mat_nativeObj,
            double winSize_width, double winSize_height, int maxLevel);

    // C++:  int meanShift(Mat probImage, Rect& window, TermCriteria criteria)
    private static native int meanShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width,
            int window_height, double[] window_out, int criteria_type, int criteria_maxCount,
            double criteria_epsilon);

    // C++:  void calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags)
    private static native void calcOpticalFlowFarneback_0(long prev_nativeObj, long next_nativeObj,
            long flow_nativeObj, double pyr_scale, int levels, int winsize, int iterations, int poly_n,
            double poly_sigma, int flags);

    // C++:  void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4)
    private static native void calcOpticalFlowPyrLK_0(long prevImg_nativeObj, long nextImg_nativeObj,
            long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj,
            long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type,
            int criteria_maxCount, double criteria_epsilon, int flags, double minEigThreshold);

    private static native void calcOpticalFlowPyrLK_1(long prevImg_nativeObj, long nextImg_nativeObj,
            long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj,
            long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel);

    private static native void calcOpticalFlowPyrLK_2(long prevImg_nativeObj, long nextImg_nativeObj,
            long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj,
            long err_mat_nativeObj);

}