Java tutorial
/* * Copyright 2015 OpenCB * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.opencb.cellbase.mongodb.db; import com.mongodb.*; import com.sun.org.apache.xpath.internal.operations.Bool; import org.broad.tribble.readers.TabixReader; import org.opencb.biodata.models.feature.Region; import org.opencb.biodata.models.variant.annotation.ConsequenceType; import org.opencb.biodata.models.variant.annotation.Score; import org.opencb.biodata.models.variant.annotation.VariantAnnotation; import org.opencb.biodata.models.variation.GenomicVariant; import org.opencb.biodata.models.variation.PopulationFrequency; import org.opencb.cellbase.core.lib.api.core.ConservedRegionDBAdaptor; import org.opencb.cellbase.core.lib.api.core.GeneDBAdaptor; import org.opencb.cellbase.core.lib.api.core.ProteinFunctionPredictorDBAdaptor; import org.opencb.cellbase.core.lib.api.regulatory.RegulatoryRegionDBAdaptor; import org.opencb.cellbase.core.lib.api.variation.ClinicalDBAdaptor; import org.opencb.cellbase.core.lib.api.variation.VariantAnnotationDBAdaptor; import org.opencb.cellbase.core.lib.api.variation.VariationDBAdaptor; import org.opencb.cellbase.mongodb.MongoDBCollectionConfiguration; import org.opencb.datastore.core.QueryOptions; import org.opencb.datastore.core.QueryResult; import org.opencb.datastore.mongodb.MongoDataStore; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.IOException; import java.util.*; //import java.util.logging.Logger; /** * Created by imedina on 11/07/14. * @author Javier Lopez fjlopez@ebi.ac.uk; */ public class VariantAnnotationMongoDBAdaptor extends MongoDBAdaptor implements VariantAnnotationDBAdaptor { // private DBCollection mongoVariationPhenotypeDBCollection; private int bigVariantSizeThreshold = 50; private int geneChunkSize = MongoDBCollectionConfiguration.GENE_CHUNK_SIZE; private int regulatoryRegionChunkSize = MongoDBCollectionConfiguration.REGULATORY_REGION_CHUNK_SIZE; private static Map<String, Map<String, Boolean>> isSynonymousCodon = new HashMap<>(); private static Map<String, List<String>> aToCodon = new HashMap<>(20); private static Map<String, String> codonToA = new HashMap<>(); private static Map<String, Integer> biotypes = new HashMap<>(30); private static Map<Character, Character> complementaryNt = new HashMap<>(); private static Map<Integer, String> siftDescriptions = new HashMap<>(); private static Map<Integer, String> polyphenDescriptions = new HashMap<>(); private GeneDBAdaptor geneDBAdaptor; private RegulatoryRegionDBAdaptor regulatoryRegionDBAdaptor; private VariationDBAdaptor variationDBAdaptor; private ClinicalDBAdaptor clinicalDBAdaptor; private ProteinFunctionPredictorDBAdaptor proteinFunctionPredictorDBAdaptor; private ConservedRegionDBAdaptor conservedRegionDBAdaptor; static { /////////////////////////////////////////////////////////////////////// ///// GENETIC CODE //////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// aToCodon.put("ALA", new ArrayList<String>()); aToCodon.get("ALA").add("GCT"); aToCodon.get("ALA").add("GCC"); aToCodon.get("ALA").add("GCA"); aToCodon.get("ALA").add("GCG"); aToCodon.put("ARG", new ArrayList<String>()); aToCodon.get("ARG").add("CGT"); aToCodon.get("ARG").add("CGC"); aToCodon.get("ARG").add("CGA"); aToCodon.get("ARG").add("CGG"); aToCodon.get("ARG").add("AGA"); aToCodon.get("ARG").add("AGG"); aToCodon.put("ASN", new ArrayList<String>()); aToCodon.get("ASN").add("AAT"); aToCodon.get("ASN").add("AAC"); aToCodon.put("ASP", new ArrayList<String>()); aToCodon.get("ASP").add("GAT"); aToCodon.get("ASP").add("GAC"); aToCodon.put("CYS", new ArrayList<String>()); aToCodon.get("CYS").add("TGT"); aToCodon.get("CYS").add("TGC"); aToCodon.put("GLN", new ArrayList<String>()); aToCodon.get("GLN").add("CAA"); aToCodon.get("GLN").add("CAG"); aToCodon.put("GLU", new ArrayList<String>()); aToCodon.get("GLU").add("GAA"); aToCodon.get("GLU").add("GAG"); aToCodon.put("GLY", new ArrayList<String>()); aToCodon.get("GLY").add("GGT"); aToCodon.get("GLY").add("GGC"); aToCodon.get("GLY").add("GGA"); aToCodon.get("GLY").add("GGG"); aToCodon.put("HIS", new ArrayList<String>()); aToCodon.get("HIS").add("CAT"); aToCodon.get("HIS").add("CAC"); aToCodon.put("ILE", new ArrayList<String>()); aToCodon.get("ILE").add("ATT"); aToCodon.get("ILE").add("ATC"); aToCodon.get("ILE").add("ATA"); aToCodon.put("LEU", new ArrayList<String>()); aToCodon.get("LEU").add("TTA"); aToCodon.get("LEU").add("TTG"); aToCodon.get("LEU").add("CTT"); aToCodon.get("LEU").add("CTC"); aToCodon.get("LEU").add("CTA"); aToCodon.get("LEU").add("CTG"); aToCodon.put("LYS", new ArrayList<String>()); aToCodon.get("LYS").add("AAA"); aToCodon.get("LYS").add("AAG"); aToCodon.put("MET", new ArrayList<String>()); aToCodon.get("MET").add("ATG"); aToCodon.put("PHE", new ArrayList<String>()); aToCodon.get("PHE").add("TTT"); aToCodon.get("PHE").add("TTC"); aToCodon.put("PRO", new ArrayList<String>()); aToCodon.get("PRO").add("CCT"); aToCodon.get("PRO").add("CCC"); aToCodon.get("PRO").add("CCA"); aToCodon.get("PRO").add("CCG"); aToCodon.put("SER", new ArrayList<String>()); aToCodon.get("SER").add("TCT"); aToCodon.get("SER").add("TCC"); aToCodon.get("SER").add("TCA"); aToCodon.get("SER").add("TCG"); aToCodon.get("SER").add("AGT"); aToCodon.get("SER").add("AGC"); aToCodon.put("THR", new ArrayList<String>()); aToCodon.get("THR").add("ACT"); aToCodon.get("THR").add("ACC"); aToCodon.get("THR").add("ACA"); aToCodon.get("THR").add("ACG"); aToCodon.put("TRP", new ArrayList<String>()); aToCodon.get("TRP").add("TGG"); aToCodon.put("TYR", new ArrayList<String>()); aToCodon.get("TYR").add("TAT"); aToCodon.get("TYR").add("TAC"); aToCodon.put("VAL", new ArrayList<String>()); aToCodon.get("VAL").add("GTT"); aToCodon.get("VAL").add("GTC"); aToCodon.get("VAL").add("GTA"); aToCodon.get("VAL").add("GTG"); aToCodon.put("STOP", new ArrayList<String>()); aToCodon.get("STOP").add("TAA"); aToCodon.get("STOP").add("TGA"); aToCodon.get("STOP").add("TAG"); for (String aa : aToCodon.keySet()) { for (String codon : aToCodon.get(aa)) { isSynonymousCodon.put(codon, new HashMap<String, Boolean>()); codonToA.put(codon, aa); } } for (String codon1 : isSynonymousCodon.keySet()) { Map<String, Boolean> codonEntry = isSynonymousCodon.get(codon1); for (String codon2 : isSynonymousCodon.keySet()) { codonEntry.put(codon2, false); } } for (String aa : aToCodon.keySet()) { for (String codon1 : aToCodon.get(aa)) { for (String codon2 : aToCodon.get(aa)) { isSynonymousCodon.get(codon1).put(codon2, true); } } } biotypes.put("3prime_overlapping_ncrna", 0); biotypes.put("IG_C_gene", 1); biotypes.put("IG_C_pseudogene", 2); biotypes.put("IG_D_gene", 3); biotypes.put("IG_J_gene", 4); biotypes.put("IG_J_pseudogene", 5); biotypes.put("IG_V_gene", 6); biotypes.put("IG_V_pseudogene", 7); biotypes.put("Mt_rRNA", 8); biotypes.put("Mt_tRNA", 9); biotypes.put("TR_C_gene", 10); biotypes.put("TR_D_gene", 11); biotypes.put("TR_J_gene", 12); biotypes.put("TR_J_pseudogene", 13); biotypes.put("TR_V_gene", 14); biotypes.put("TR_V_pseudogene", 15); biotypes.put("antisense", 16); biotypes.put("lincRNA", 17); biotypes.put("miRNA", 18); biotypes.put("misc_RNA", 19); biotypes.put("polymorphic_pseudogene", 20); biotypes.put("processed_pseudogene", 21); biotypes.put("processed_transcript", 22); biotypes.put("protein_coding", 23); biotypes.put("pseudogene", 24); biotypes.put("rRNA", 25); biotypes.put("sense_intronic", 26); biotypes.put("sense_overlapping", 27); biotypes.put("snRNA", 28); biotypes.put("snoRNA", 29); biotypes.put("nonsense_mediated_decay", 30); biotypes.put("unprocessed_pseudogene", 31); biotypes.put("transcribed_unprocessed_pseudogene", 32); biotypes.put("retained_intron", 33); biotypes.put("non_stop_decay", 34); biotypes.put("unitary_pseudogene", 35); biotypes.put("translated_processed_pseudogene", 36); biotypes.put("transcribed_processed_pseudogene", 37); biotypes.put("tRNA_pseudogene", 38); biotypes.put("snoRNA_pseudogene", 39); biotypes.put("snRNA_pseudogene", 40); biotypes.put("scRNA_pseudogene", 41); biotypes.put("rRNA_pseudogene", 42); biotypes.put("misc_RNA_pseudogene", 43); biotypes.put("miRNA_pseudogene", 44); biotypes.put("non_coding", 45); biotypes.put("ambiguous_orf", 46); biotypes.put("known_ncrna", 47); biotypes.put("retrotransposed", 48); biotypes.put("transcribed_unitary_pseudogene", 49); biotypes.put("translated_unprocessed_pseudogene", 50); biotypes.put("LRG_gene", 51); complementaryNt.put('A', 'T'); complementaryNt.put('C', 'G'); complementaryNt.put('G', 'C'); complementaryNt.put('T', 'A'); polyphenDescriptions.put(0, "probably damaging"); polyphenDescriptions.put(1, "possibly damaging"); polyphenDescriptions.put(2, "benign"); polyphenDescriptions.put(3, "unknown"); siftDescriptions.put(0, "tolerated"); siftDescriptions.put(1, "deleterious"); } public VariantAnnotationMongoDBAdaptor(DB db, String species, String assembly) { super(db, species, assembly); } public VariantAnnotationMongoDBAdaptor(DB db, String species, String assembly, int geneChunkSize) { super(db, species, assembly); this.geneChunkSize = geneChunkSize; } public VariantAnnotationMongoDBAdaptor(String species, String assembly, MongoDataStore mongoDataStore) { super(species, assembly, mongoDataStore); logger.info("VariantAnnotationMongoDBAdaptor: in 'constructor'"); } public VariationDBAdaptor getVariationDBAdaptor() { return variationDBAdaptor; } public void setVariationDBAdaptor(VariationDBAdaptor variationDBAdaptor) { this.variationDBAdaptor = variationDBAdaptor; } public ClinicalDBAdaptor getVariantClinicalDBAdaptor() { return clinicalDBAdaptor; } public void setVariantClinicalDBAdaptor(ClinicalDBAdaptor clinicalDBAdaptor) { this.clinicalDBAdaptor = clinicalDBAdaptor; } public ProteinFunctionPredictorDBAdaptor getProteinFunctionPredictorDBAdaptor() { return proteinFunctionPredictorDBAdaptor; } public void setProteinFunctionPredictorDBAdaptor( ProteinFunctionPredictorDBAdaptor proteinFunctionPredictorDBAdaptor) { this.proteinFunctionPredictorDBAdaptor = proteinFunctionPredictorDBAdaptor; } public ConservedRegionDBAdaptor getConservedRegionDBAdaptor() { return conservedRegionDBAdaptor; } @Override public void setConservedRegionDBAdaptor(ConservedRegionDBAdaptor conservedRegionDBAdaptor) { this.conservedRegionDBAdaptor = conservedRegionDBAdaptor; } public GeneDBAdaptor getGeneDBAdaptor() { return geneDBAdaptor; } public void setGeneDBAdaptor(GeneDBAdaptor geneDBAdaptor) { this.geneDBAdaptor = geneDBAdaptor; } public RegulatoryRegionDBAdaptor getRegulatoryRegionDBAdaptor() { return regulatoryRegionDBAdaptor; } public void setRegulatoryRegionDBAdaptor(RegulatoryRegionDBAdaptor regulatoryRegionDBAdaptor) { this.regulatoryRegionDBAdaptor = regulatoryRegionDBAdaptor; } private Boolean regionsOverlap(Integer region1Start, Integer region1End, Integer region2Start, Integer region2End) { // return ((region2Start>=region1Start && region2Start<=region1End) || (region2End>=region1Start && region2End<=region1End) || (region1Start>=region2Start && region1End<=region2End)); // return ((region2Start >= region1Start || region2End >= region1Start) && (region2Start <= region1End || region2End <= region1End)); return (region2Start <= region1End && region2End >= region1Start); } private Boolean isStopCodon(String codon) { if (codon.equals("TAA") || codon.equals("TGA") || codon.equals("TAG")) { return true; } return false; } private Boolean gainsStopCodon(String sequence) { int i = 0; Boolean stop = false; do { String codon = sequence.substring(i, i + 3); stop = (codon.equals("TAA") || codon.equals("TGA") || codon.equals("TAG")); i++; } while ((i < sequence.length()) && !stop); return stop; } private void solvePositiveCodingEffect(Boolean splicing, String transcriptSequence, Integer transcriptEnd, Integer genomicCodingEnd, Integer cdnaCodingStart, Integer cdnaCodingEnd, Integer cdnaVariantStart, Integer cdnaVariantEnd, BasicDBList transcriptFlags, String variantRef, String variantAlt, HashSet<String> SoNames, ConsequenceType consequenceTypeTemplate) { Boolean codingAnnotationAdded = false; // This will indicate wether it is needed to add the "coding_sequence_variant" annotation or not if (variantAlt.equals("-")) { // Deletion if (cdnaVariantStart != null && cdnaVariantStart < (cdnaCodingStart + 3) && (transcriptFlags == null || cdnaCodingStart > 0 || !transcriptFlags.contains("cds_start_NF"))) { // cdnaVariantStart=null if variant is intronic. cdnaCodingStart<1 if cds_start_NF and phase!=0 SoNames.add("initiator_codon_variant"); codingAnnotationAdded = true; } if (cdnaVariantEnd != null) { int finalNtPhase = (cdnaCodingEnd - cdnaCodingStart) % 3; Boolean stopToSolve = true; if (!splicing && cdnaVariantStart != null) { // just checks cdnaVariantStart!=null because no splicing means cdnaVariantEnd is also != null codingAnnotationAdded = true; if (variantRef.length() % 3 == 0) { SoNames.add("inframe_deletion"); } else { SoNames.add("frameshift_variant"); } stopToSolve = false; // Stop codon annotation will be solved in the line below. solveStopCodonPositiveDeletion(transcriptSequence, cdnaCodingStart, cdnaVariantStart, cdnaVariantEnd, SoNames); } if (cdnaVariantEnd >= (cdnaCodingEnd - finalNtPhase)) { if (transcriptFlags != null && transcriptFlags.contains("cds_end_NF")) { if (finalNtPhase != 2) { SoNames.add("incomplete_terminal_codon_variant"); } } else if (stopToSolve) { // Only if stop codon annotation was not already solved in the if block above SoNames.add("stop_lost"); } } } } else { if (variantRef.equals("-") && (cdnaVariantStart != null)) { // Insertion. Be careful: insertion coordinates are special, alternative nts are pasted between cdnaVariantStart and cdnaVariantEnd codingAnnotationAdded = true; if (cdnaVariantStart < (cdnaCodingStart + 2) && (transcriptFlags == null || cdnaCodingStart > 0 || !transcriptFlags.contains("cds_start_NF"))) { // cdnaVariantStart=null if variant is intronic. cdnaCodingStart<1 if cds_start_NF and phase!=0 SoNames.add("initiator_codon_variant"); } int finalNtPhase = (transcriptSequence.length() - cdnaCodingStart) % 3; if ((cdnaVariantStart >= (transcriptSequence.length() - finalNtPhase)) && (transcriptEnd.equals(genomicCodingEnd)) && finalNtPhase != 2) { // Variant in the last codon of a transcript without stop codon. finalNtPhase==2 if the cds length is multiple of 3. SoNames.add("incomplete_terminal_codon_variant"); } if (variantAlt.length() % 3 == 0) { SoNames.add("inframe_insertion"); } else { SoNames.add("frameshift_variant"); } solveStopCodonPositiveInsertion(transcriptSequence, cdnaCodingStart, cdnaVariantStart, variantAlt, SoNames); // if(cdnaCodingEnd!=0) { // Some transcripts do not have a STOP codon annotated in the ENSEMBL gtf. This causes CellbaseBuilder to leave cdnaVariantEnd to 0 // if (cdnaVariantStart != null && cdnaVariantStart > (cdnaCodingEnd - 3)) { // -3 because alternative nts are pasted between cdnaVariantStart and cdnaVariantEnd // char[] modifiedCodonArray = solveStopCodonPositiveInsertion(transcriptSequence, cdnaCodingStart, cdnaVariantStart, variantAlt); // if(isStopCodon(String.valueOf(modifiedCodonArray))) { // SoNames.add("stop_retained_variant"); // } else { // SoNames.add("stop_lost"); // } // } // } else { // Be careful, strict > since this is a insertion, inserted nts are pasted on the left of cdnaVariantStart // } } else { // SNV if (cdnaVariantStart != null) { int finalNtPhase = (transcriptSequence.length() - cdnaCodingStart) % 3; if (!splicing) { if ((cdnaVariantEnd >= (transcriptSequence.length() - finalNtPhase)) && (transcriptEnd.equals(genomicCodingEnd)) && finalNtPhase != 2) { // Variant in the last codon of a transcript without stop codon. finalNtPhase==2 if the cds length is multiple of 3. SoNames.add("incomplete_terminal_codon_variant"); // If not, avoid calculating reference/modified codon } else if (cdnaVariantStart > (cdnaCodingStart + 2) || cdnaCodingStart > 0) { // cdnaCodingStart<1 if cds_start_NF and phase!=0 Integer variantPhaseShift = (cdnaVariantStart - cdnaCodingStart) % 3; int modifiedCodonStart = cdnaVariantStart - variantPhaseShift; String referenceCodon = transcriptSequence.substring(modifiedCodonStart - 1, modifiedCodonStart + 2); // -1 and +2 because of base 0 String indexing char[] modifiedCodonArray = referenceCodon.toCharArray(); modifiedCodonArray[variantPhaseShift] = variantAlt.toCharArray()[0]; codingAnnotationAdded = true; String referenceA = codonToA.get(referenceCodon); String alternativeA = codonToA.get(String.valueOf(modifiedCodonArray)); if (isSynonymousCodon.get(referenceCodon).get(String.valueOf(modifiedCodonArray))) { if (isStopCodon(referenceCodon)) { SoNames.add("stop_retained_variant"); } else { // coding end may be not correctly annotated (incomplete_terminal_codon_variant), but if the length of the cds%3=0, annotation should be synonymous variant SoNames.add("synonymous_variant"); } } else { if (cdnaVariantStart < (cdnaCodingStart + 3)) { SoNames.add("initiator_codon_variant"); // Gary - initiator codon SO terms not compatible with the terms below if (isStopCodon(String.valueOf(modifiedCodonArray))) { SoNames.add("stop_gained"); // Gary - initiator codon SO terms not compatible with the terms below } } else if (isStopCodon(String.valueOf(referenceCodon))) { SoNames.add("stop_lost"); } else { SoNames.add(isStopCodon(String.valueOf(modifiedCodonArray)) ? "stop_gained" : "missense_variant"); } if (cdnaVariantEnd < (cdnaCodingEnd - 2)) { // Variant does not affect the last codon (probably stop codon). If the 3prime end is incompletely annotated and execution reaches this line, finalNtPhase can only be 2 QueryResult proteinSubstitutionScoresQueryResult = proteinFunctionPredictorDBAdaptor .getByAaChange(consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getAaPosition(), alternativeA, new QueryOptions()); if (proteinSubstitutionScoresQueryResult.getNumResults() == 1) { BasicDBObject proteinSubstitutionScores = (BasicDBObject) proteinSubstitutionScoresQueryResult .getResult().get(0); if (proteinSubstitutionScores.get("ss") != null) { consequenceTypeTemplate.addProteinSubstitutionScore(new Score( Double.parseDouble("" + proteinSubstitutionScores.get("ss")), "Sift", siftDescriptions.get(proteinSubstitutionScores.get("se")))); } if (proteinSubstitutionScores.get("ps") != null) { consequenceTypeTemplate.addProteinSubstitutionScore(new Score( Double.parseDouble("" + proteinSubstitutionScores.get("ps")), "Polyphen", polyphenDescriptions.get(proteinSubstitutionScores.get("pe")))); } } } } // Set consequenceTypeTemplate.aChange consequenceTypeTemplate.setAaChange(referenceA + "/" + alternativeA); // Set consequenceTypeTemplate.codon leaving only the nt that changes in uppercase. Careful with upper/lower case letters char[] referenceCodonArray = referenceCodon.toLowerCase().toCharArray(); referenceCodonArray[variantPhaseShift] = Character .toUpperCase(referenceCodonArray[variantPhaseShift]); modifiedCodonArray = String.valueOf(modifiedCodonArray).toLowerCase().toCharArray(); modifiedCodonArray[variantPhaseShift] = Character .toUpperCase(modifiedCodonArray[variantPhaseShift]); consequenceTypeTemplate.setCodon( String.valueOf(referenceCodonArray) + "/" + String.valueOf(modifiedCodonArray)); } } } } } if (!codingAnnotationAdded) { SoNames.add("coding_sequence_variant"); } } private void solveStopCodonPositiveDeletion(String transcriptSequence, Integer cdnaCodingStart, Integer cdnaVariantStart, Integer cdnaVariantEnd, Set<String> SoNames) { Integer variantPhaseShift1 = (cdnaVariantStart - cdnaCodingStart) % 3; Integer variantPhaseShift2 = (cdnaVariantEnd - cdnaCodingStart) % 3; int modifiedCodon1Start = cdnaVariantStart - variantPhaseShift1; int modifiedCodon2Start = cdnaVariantEnd - variantPhaseShift2; String referenceCodon1 = transcriptSequence.substring(modifiedCodon1Start - 1, modifiedCodon1Start + 2); // -1 and +2 because of base 0 String indexing String referenceCodon2 = transcriptSequence.substring(modifiedCodon2Start - 1, modifiedCodon2Start + 2); // -1 and +2 because of base 0 String indexing char[] modifiedCodonArray = referenceCodon1.toCharArray(); int i = cdnaVariantEnd; // Position (0 based index) in transcriptSequence of the first nt after the deletion int codonPosition; for (codonPosition = variantPhaseShift1; codonPosition < 3; codonPosition++) { // BE CAREFUL: this method is assumed to be called after checking that cdnaVariantStart and cdnaVariantEnd are within coding sequence (both of them within an exon). modifiedCodonArray[codonPosition] = transcriptSequence.charAt(i); // Paste reference nts after deletion in the corresponding codon position i++; } decideStopCodonModificationAnnotation(SoNames, isStopCodon(referenceCodon2) ? referenceCodon2 : referenceCodon1, modifiedCodonArray); } private void decideStopCodonModificationAnnotation(Set<String> SoNames, String referenceCodon, char[] modifiedCodonArray) { if (isSynonymousCodon.get(referenceCodon).get(String.valueOf(modifiedCodonArray))) { if (isStopCodon(referenceCodon)) { SoNames.add("stop_retained_variant"); } } else { if (isStopCodon(String.valueOf(referenceCodon))) { SoNames.add("stop_lost"); } else if (isStopCodon(String.valueOf(modifiedCodonArray))) { SoNames.add("stop_gained"); } } } private void solveStopCodonPositiveInsertion(String transcriptSequence, Integer cdnaCodingStart, Integer cdnaVariantStart, String variantAlt, Set<String> SoNames) { Integer variantPhaseShift = (cdnaVariantStart + 1 - cdnaCodingStart) % 3; // Sum 1 to cdnaVariantStart because of the peculiarities of insertion coordinates: cdnaVariantStart coincides with the vcf position, the actual substituted nt is the one on the right int modifiedCodonStart = cdnaVariantStart + 1 - variantPhaseShift; String referenceCodon = transcriptSequence.substring(modifiedCodonStart - 1, modifiedCodonStart + 2); // -1 and +2 because of base 0 String indexing char[] modifiedCodonArray = referenceCodon.toCharArray(); char[] referenceCodonArray = referenceCodon.toCharArray(); int i = 0; int transcriptSequencePosition = cdnaVariantStart; // indexing over transcriptSequence is 0 based, transcriptSequencePosition points to cdnaVariantEnd actually int modifiedCodonPosition; int modifiedCodonPositionStart = variantPhaseShift; do { for (modifiedCodonPosition = modifiedCodonPositionStart; (modifiedCodonPosition < 3 && i < variantAlt.length()); modifiedCodonPosition++) { // Paste alternative nt in the corresponding codon position modifiedCodonArray[modifiedCodonPosition] = variantAlt.toCharArray()[i]; i++; } for (; modifiedCodonPosition < 3; modifiedCodonPosition++) { // Concatenate reference codon nts after alternative nts modifiedCodonArray[modifiedCodonPosition] = transcriptSequence.charAt(transcriptSequencePosition); transcriptSequencePosition++; // modifiedCodonArray[modifiedCodonPosition] = referenceCodonArray[variantPhaseShift]; // variantPhaseShift++; } decideStopCodonModificationAnnotation(SoNames, referenceCodon, modifiedCodonArray); modifiedCodonPositionStart = 0; // Reset the position where the next modified codon must be started to be filled } while (i < variantAlt.length()); // All posible new codons generated by the inserted sequence must be checked } private void solveNegativeCodingEffect(Boolean splicing, String transcriptSequence, Integer transcriptStart, Integer genomicCodingStart, Integer cdnaCodingStart, Integer cdnaCodingEnd, Integer cdnaVariantStart, Integer cdnaVariantEnd, BasicDBList transcriptFlags, String variantRef, String variantAlt, HashSet<String> SoNames, ConsequenceType consequenceTypeTemplate) { Boolean codingAnnotationAdded = false; if (variantAlt.equals("-")) { // Deletion if (cdnaVariantStart != null && cdnaVariantStart < (cdnaCodingStart + 3) && (transcriptFlags == null || cdnaCodingStart > 0 || !transcriptFlags.contains("cds_start_NF"))) { // cdnaVariantStart=null if variant is intronic. cdnaCodingStart<1 if cds_start_NF and phase!=0 SoNames.add("initiator_codon_variant"); codingAnnotationAdded = true; } if (cdnaVariantEnd != null) { int finalNtPhase = (cdnaCodingEnd - cdnaCodingStart) % 3; Boolean stopToSolve = true; if (!splicing && cdnaVariantStart != null) { // just checks cdnaVariantStart!=null because no splicing means cdnaVariantEnd is also != null codingAnnotationAdded = true; if (variantRef.length() % 3 == 0) { SoNames.add("inframe_deletion"); } else { SoNames.add("frameshift_variant"); } stopToSolve = false; // Stop codon annotation will be solved in the line below. solveStopCodonNegativeDeletion(transcriptSequence, cdnaCodingStart, cdnaVariantStart, cdnaVariantEnd, SoNames); } if (cdnaVariantEnd >= (cdnaCodingEnd - finalNtPhase)) { if (transcriptFlags != null && transcriptFlags.contains("cds_end_NF")) { if (finalNtPhase != 2) { SoNames.add("incomplete_terminal_codon_variant"); } } else if (stopToSolve) { // Only if stop codon annotation was not already solved in the if block above SoNames.add("stop_lost"); } } } } else { if (variantRef.equals("-") && (cdnaVariantStart != null)) { // Insertion TODO: I've seen insertions within Cellbase-mongo with a ref != - codingAnnotationAdded = true; if (cdnaVariantStart < (cdnaCodingStart + 2) && (transcriptFlags == null || cdnaCodingStart > 0 || !transcriptFlags.contains("cds_start_NF"))) { // cdnaVariantStart=null if variant is intronic. cdnaCodingStart<1 if cds_start_NF and phase!=0 SoNames.add("initiator_codon_variant"); } int finalNtPhase = (transcriptSequence.length() - cdnaCodingStart) % 3; if ((cdnaVariantStart >= (transcriptSequence.length() - finalNtPhase)) && (transcriptStart.equals(genomicCodingStart)) && finalNtPhase != 2) { // Variant in the last codon of a transcript without stop codon. finalNtPhase==2 if the cds length is multiple of 3. SoNames.add("incomplete_terminal_codon_variant"); } if (variantAlt.length() % 3 == 0) { SoNames.add("inframe_insertion"); } else { SoNames.add("frameshift_variant"); } solveStopCodonNegativeInsertion(transcriptSequence, cdnaCodingStart, cdnaVariantEnd, variantAlt, SoNames); // Be careful, cdnaVariantEnd is being used in this case!!! // if(cdnaCodingEnd!=0) { // Some transcripts do not have a STOP codon annotated in the ENSEMBL gtf. This causes CellbaseBuilder to leave cdnaVariantEnd to 0 // if (cdnaVariantEnd != null && cdnaVariantEnd > (cdnaCodingEnd - 3)) { // -3 because alternative nts are pasted on the left of >>>genomic<<<VariantStart // char[] modifiedCodonArray = solveStopCodonNegativeInsertion(transcriptSequence, cdnaCodingStart, cdnaVariantEnd, variantAlt); // Be careful, cdnaVariantEnd is being used in this case!!! // if(isStopCodon(String.valueOf(modifiedCodonArray))) { // SoNames.add("stop_retained_variant"); // } else { // SoNames.add("stop_lost"); // } // } // } else { // } // if(cdnaVariantStart != null) { // if(!splicing && cdnaVariantStart != null) { // } } else { // SNV if (cdnaVariantStart != null) { int finalNtPhase = (transcriptSequence.length() - cdnaCodingStart) % 3; if (!splicing) { if ((cdnaVariantEnd >= (transcriptSequence.length() - finalNtPhase)) && (transcriptStart.equals(genomicCodingStart)) && finalNtPhase != 2) { // Variant in the last codon of a transcript without stop codon. finalNtPhase==2 if the cds length is multiple of 3. SoNames.add("incomplete_terminal_codon_variant"); // If that is the case and variant ocurs in the last complete/incomplete codon, no coding prediction is needed } else if (cdnaVariantStart > (cdnaCodingStart + 2) || cdnaCodingStart > 0) { // cdnaCodingStart<1 if cds_start_NF and phase!=0 Integer variantPhaseShift = (cdnaVariantStart - cdnaCodingStart) % 3; int modifiedCodonStart = cdnaVariantStart - variantPhaseShift; String reverseCodon = new StringBuilder(transcriptSequence.substring( transcriptSequence.length() - modifiedCodonStart - 2, transcriptSequence.length() - modifiedCodonStart + 1)).reverse().toString(); // Rigth limit of the substring sums +1 because substring does not include that position char[] referenceCodon = reverseCodon.toCharArray(); referenceCodon[0] = complementaryNt.get(referenceCodon[0]); referenceCodon[1] = complementaryNt.get(referenceCodon[1]); referenceCodon[2] = complementaryNt.get(referenceCodon[2]); char[] modifiedCodonArray = referenceCodon.clone(); modifiedCodonArray[variantPhaseShift] = complementaryNt .get(variantAlt.toCharArray()[0]); codingAnnotationAdded = true; String referenceA = codonToA.get(String.valueOf(referenceCodon)); String alternativeA = codonToA.get(String.valueOf(modifiedCodonArray)); if (isSynonymousCodon.get(String.valueOf(referenceCodon)) .get(String.valueOf(modifiedCodonArray))) { if (isStopCodon(String.valueOf(referenceCodon))) { SoNames.add("stop_retained_variant"); } else { // coding end may be not correctly annotated (incomplete_terminal_codon_variant), but if the length of the cds%3=0, annotation should be synonymous variant SoNames.add("synonymous_variant"); } } else { if (cdnaVariantStart < (cdnaCodingStart + 3)) { SoNames.add("initiator_codon_variant"); // Gary - initiator codon SO terms not compatible with the terms below if (isStopCodon(String.valueOf(modifiedCodonArray))) { SoNames.add("stop_gained"); // Gary - initiator codon SO terms not compatible with the terms below } } else if (isStopCodon(String.valueOf(referenceCodon))) { SoNames.add("stop_lost"); } else { SoNames.add(isStopCodon(String.valueOf(modifiedCodonArray)) ? "stop_gained" : "missense_variant"); } if (cdnaVariantEnd < (cdnaCodingEnd - 2)) { // Variant does not affect the last codon (probably stop codon). If the 3prime end is incompletely annotated and execution reaches this line, finalNtPhase can only be 2 QueryResult proteinSubstitutionScoresQueryResult = proteinFunctionPredictorDBAdaptor .getByAaChange(consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getAaPosition(), alternativeA, new QueryOptions()); if (proteinSubstitutionScoresQueryResult.getNumResults() == 1) { BasicDBObject proteinSubstitutionScores = (BasicDBObject) proteinSubstitutionScoresQueryResult .getResult().get(0); if (proteinSubstitutionScores.get("ss") != null) { consequenceTypeTemplate.addProteinSubstitutionScore(new Score( Double.parseDouble("" + proteinSubstitutionScores.get("ss")), "Sift", siftDescriptions.get(proteinSubstitutionScores.get("se")))); } if (proteinSubstitutionScores.get("ps") != null) { consequenceTypeTemplate.addProteinSubstitutionScore(new Score( Double.parseDouble("" + proteinSubstitutionScores.get("ps")), "Polyphen", polyphenDescriptions.get(proteinSubstitutionScores.get("pe")))); } } } } // Set consequenceTypeTemplate.aChange consequenceTypeTemplate.setAaChange(referenceA + "/" + alternativeA); // Fill consequenceTypeTemplate.codon leaving only the nt that changes in uppercase. Careful with upper/lower case letters char[] referenceCodonArray = String.valueOf(referenceCodon).toLowerCase().toCharArray(); referenceCodonArray[variantPhaseShift] = Character .toUpperCase(referenceCodonArray[variantPhaseShift]); modifiedCodonArray = String.valueOf(modifiedCodonArray).toLowerCase().toCharArray(); modifiedCodonArray[variantPhaseShift] = Character .toUpperCase(modifiedCodonArray[variantPhaseShift]); consequenceTypeTemplate.setCodon( String.valueOf(referenceCodonArray) + "/" + String.valueOf(modifiedCodonArray)); } } } } } if (!codingAnnotationAdded) { SoNames.add("coding_sequence_variant"); } } private void solveStopCodonNegativeDeletion(String transcriptSequence, Integer cdnaCodingStart, Integer cdnaVariantStart, Integer cdnaVariantEnd, Set<String> SoNames) { Integer variantPhaseShift1 = (cdnaVariantStart - cdnaCodingStart) % 3; Integer variantPhaseShift2 = (cdnaVariantEnd - cdnaCodingStart) % 3; int modifiedCodon1Start = cdnaVariantStart - variantPhaseShift1; int modifiedCodon2Start = cdnaVariantEnd - variantPhaseShift2; String reverseCodon1 = new StringBuilder( transcriptSequence.substring(transcriptSequence.length() - modifiedCodon1Start - 2, transcriptSequence.length() - modifiedCodon1Start + 1)).reverse().toString(); // Rigth limit of the substring sums +1 because substring does not include that position String reverseCodon2 = new StringBuilder( transcriptSequence.substring(transcriptSequence.length() - modifiedCodon2Start - 2, transcriptSequence.length() - modifiedCodon2Start + 1)).reverse().toString(); // Rigth limit of the substring sums +1 because substring does not include that position String reverseTranscriptSequence = new StringBuilder(transcriptSequence.substring( transcriptSequence.length() - cdnaVariantEnd - 3, transcriptSequence.length() - cdnaVariantEnd)) .reverse().toString(); // Rigth limit of the substring -2 because substring does not include that position char[] referenceCodon1Array = reverseCodon1.toCharArray(); referenceCodon1Array[0] = complementaryNt.get(referenceCodon1Array[0]); referenceCodon1Array[1] = complementaryNt.get(referenceCodon1Array[1]); referenceCodon1Array[2] = complementaryNt.get(referenceCodon1Array[2]); char[] referenceCodon2Array = reverseCodon2.toCharArray(); referenceCodon2Array[0] = complementaryNt.get(referenceCodon2Array[0]); referenceCodon2Array[1] = complementaryNt.get(referenceCodon2Array[1]); referenceCodon2Array[2] = complementaryNt.get(referenceCodon2Array[2]); char[] modifiedCodonArray = referenceCodon1Array.clone(); int i = 0; int codonPosition; for (codonPosition = variantPhaseShift1; codonPosition < 3; codonPosition++) { // BE CAREFUL: this method is assumed to be called after checking that cdnaVariantStart and cdnaVariantEnd are within coding sequence (both of them within an exon). modifiedCodonArray[codonPosition] = complementaryNt.get(reverseTranscriptSequence.charAt(i)); // Paste reference nts after deletion in the corresponding codon position i++; } decideStopCodonModificationAnnotation(SoNames, isStopCodon(String.valueOf(referenceCodon2Array)) ? String.valueOf(referenceCodon2Array) : String.valueOf(referenceCodon1Array), modifiedCodonArray); } private void solveStopCodonNegativeInsertion(String transcriptSequence, Integer cdnaCodingStart, Integer cdnaVariantEnd, String variantAlt, Set<String> SoNames) { Integer variantPhaseShift = (cdnaVariantEnd - cdnaCodingStart) % 3; int modifiedCodonStart = cdnaVariantEnd - variantPhaseShift; String reverseCodon = new StringBuilder( transcriptSequence.substring(transcriptSequence.length() - modifiedCodonStart - 2, transcriptSequence.length() - modifiedCodonStart + 1)).reverse().toString(); // Rigth limit of the substring sums +1 because substring does not include that position String reverseTranscriptSequence = new StringBuilder(transcriptSequence.substring( transcriptSequence.length() - cdnaVariantEnd - 3, transcriptSequence.length() - cdnaVariantEnd)) .reverse().toString(); // Rigth limit of the substring -2 because substring does not include that position char[] referenceCodonArray = reverseCodon.toCharArray(); referenceCodonArray[0] = complementaryNt.get(referenceCodonArray[0]); referenceCodonArray[1] = complementaryNt.get(referenceCodonArray[1]); referenceCodonArray[2] = complementaryNt.get(referenceCodonArray[2]); char[] modifiedCodonArray = referenceCodonArray.clone(); char[] altArray = (new StringBuilder(variantAlt).reverse().toString()).toCharArray(); int i = 0; int reverseTranscriptSequencePosition = 0; int modifiedCodonPosition; int modifiedCodonPositionStart = variantPhaseShift; do { for (modifiedCodonPosition = modifiedCodonPositionStart; (modifiedCodonPosition < 3 && i < variantAlt.length()); modifiedCodonPosition++) { // Paste alternative nt in the corresponding codon position modifiedCodonArray[modifiedCodonPosition] = complementaryNt.get(altArray[i]); i++; } for (; modifiedCodonPosition < 3; modifiedCodonPosition++) { // Concatenate reference codon nts after alternative nts modifiedCodonArray[modifiedCodonPosition] = reverseTranscriptSequence .charAt(reverseTranscriptSequencePosition); reverseTranscriptSequencePosition++; // modifiedCodonArray[modifiedCodonPosition] = referenceCodonArray[variantPhaseShift]; // variantPhaseShift++; } decideStopCodonModificationAnnotation(SoNames, String.valueOf(referenceCodonArray), modifiedCodonArray); modifiedCodonPositionStart = 0; // Reset the position where the next modified codon must be started to be filled } while (i < variantAlt.length()); // All posible new codons generated by the inserted sequence must be checked } private void solveCodingPositiveTranscriptEffect(Boolean splicing, String transcriptSequence, Integer transcriptStart, Integer transcriptEnd, Integer genomicCodingStart, Integer genomicCodingEnd, Integer variantStart, Integer variantEnd, Integer cdnaCodingStart, Integer cdnaCodingEnd, Integer cdnaVariantStart, Integer cdnaVariantEnd, Integer cdsLength, BasicDBList transcriptFlags, int firstCdsPhase, String variantRef, String variantAlt, HashSet<String> SoNames, ConsequenceType consequenceTypeTemplate) { if (variantStart < genomicCodingStart) { // if(variantStart<genomicCodingStart || (variantRef.equals("-") && variantStart.equals(genomicCodingStart))) { // variantEnd -= variantRef.equals("-")?1:0; // Insertion coordinates are peculiar: the actual inserted nts are assumed to be pasted on the left of variantStart, be careful with left edges if (transcriptStart < genomicCodingStart || (transcriptFlags != null && transcriptFlags.contains("cds_start_NF"))) {// Check transcript has 3 UTR SoNames.add("5_prime_UTR_variant"); } if ((variantEnd >= genomicCodingStart) && !(variantRef.equals("-") && variantEnd.equals(genomicCodingStart))) { SoNames.add("coding_sequence_variant"); if (transcriptFlags == null || cdnaCodingStart > 0 || !transcriptFlags.contains("cds_start_NF")) { // cdnaCodingStart<1 if cds_start_NF and phase!=0 SoNames.add("initiator_codon_variant"); } if (variantEnd > (genomicCodingEnd - 3)) { SoNames.add("stop_lost"); if (variantEnd > genomicCodingEnd) { if (transcriptEnd > genomicCodingEnd || (transcriptFlags != null && transcriptFlags.contains("cds_end_NF"))) {// Check transcript has 3 UTR) SoNames.add("3_prime_UTR_variant"); } } } } // variantEnd += variantRef.equals("-")?1:0; // Recover original value of variantEnd for next transcripts } else { if (variantStart <= genomicCodingEnd) { // Variant start within coding region if (cdnaVariantStart != null) { // cdnaVariantStart may be null if variantStart falls in an intron if (transcriptFlags != null && transcriptFlags.contains("cds_start_NF")) { cdnaCodingStart -= ((3 - firstCdsPhase) % 3); // cdnaCodingStart -= firstCdsPhase; } int cdsVariantStart = cdnaVariantStart - cdnaCodingStart + 1; consequenceTypeTemplate.setCdsPosition(cdsVariantStart); consequenceTypeTemplate.setAaPosition(((cdsVariantStart - 1) / 3) + 1); } if (variantEnd <= genomicCodingEnd) { // Variant end also within coding region solvePositiveCodingEffect(splicing, transcriptSequence, transcriptEnd, genomicCodingEnd, cdnaCodingStart, cdnaCodingEnd, cdnaVariantStart, cdnaVariantEnd, transcriptFlags, variantRef, variantAlt, SoNames, consequenceTypeTemplate); } else { if (transcriptEnd > genomicCodingEnd || (transcriptFlags != null && transcriptFlags.contains("cds_end_NF"))) {// Check transcript has 3 UTR) SoNames.add("3_prime_UTR_variant"); } if (!variantRef.equals("-")) { // If it is an insertion, it is located between the genomicCodingEnd and the next base, does not affect the stop codon and is not part of the coding sequence SoNames.add("coding_sequence_variant"); SoNames.add("stop_lost"); } } } else { if (transcriptEnd > genomicCodingEnd || (transcriptFlags != null && transcriptFlags.contains("cds_end_NF"))) {// Check transcript has 3 UTR) SoNames.add("3_prime_UTR_variant"); } } } } private void solveCodingNegativeTranscriptEffect(Boolean splicing, String transcriptSequence, Integer transcriptStart, Integer transcriptEnd, Integer genomicCodingStart, Integer genomicCodingEnd, Integer variantStart, Integer variantEnd, Integer cdnaCodingStart, Integer cdnaCodingEnd, Integer cdnaVariantStart, Integer cdnaVariantEnd, Integer cdsLength, BasicDBList transcriptFlags, int firstCdsPhase, String variantRef, String variantAlt, HashSet<String> SoNames, ConsequenceType consequenceTypeTemplate) { if (variantEnd > genomicCodingEnd) { if (transcriptEnd > genomicCodingEnd || (transcriptFlags != null && transcriptFlags.contains("cds_start_NF"))) {// Check transcript has 3 UTR SoNames.add("5_prime_UTR_variant"); } if (variantStart <= genomicCodingEnd && !(variantRef.equals("-") && variantStart.equals(genomicCodingEnd))) { SoNames.add("coding_sequence_variant"); if (transcriptFlags == null || cdnaCodingStart > 0 || !transcriptFlags.contains("cds_start_NF")) { // cdnaCodingStart<1 if cds_start_NF and phase!=0 SoNames.add("initiator_codon_variant"); } if (variantStart < (genomicCodingStart + 3)) { SoNames.add("stop_lost"); if (variantStart < genomicCodingStart) { if (transcriptStart < genomicCodingStart || (transcriptFlags != null && transcriptFlags.contains("cds_end_NF"))) {// Check transcript has 3 UTR) SoNames.add("3_prime_UTR_variant"); } } } } } else { if (variantEnd >= genomicCodingStart) { if (cdnaVariantStart != null) { // cdnaVariantStart may be null if variantEnd falls in an intron if (transcriptFlags != null && transcriptFlags.contains("cds_start_NF")) { // cdnaCodingStart -= firstCdsPhase; cdnaCodingStart -= ((3 - firstCdsPhase) % 3); } int cdsVariantStart = cdnaVariantStart - cdnaCodingStart + 1; consequenceTypeTemplate.setCdsPosition(cdsVariantStart); consequenceTypeTemplate.setAaPosition(((cdsVariantStart - 1) / 3) + 1); } if (variantStart >= genomicCodingStart) { // Variant start also within coding region solveNegativeCodingEffect(splicing, transcriptSequence, transcriptStart, genomicCodingStart, cdnaCodingStart, cdnaCodingEnd, cdnaVariantStart, cdnaVariantEnd, transcriptFlags, variantRef, variantAlt, SoNames, consequenceTypeTemplate); } else { if (transcriptStart < genomicCodingStart || (transcriptFlags != null && transcriptFlags.contains("cds_end_NF"))) {// Check transcript has 3 UTR) SoNames.add("3_prime_UTR_variant"); } if (!variantRef.equals("-")) { // If it is an insertion, it is located between the genomicCodingEnd and the next base, does not affect the stop codon and is not part of the coding sequence SoNames.add("coding_sequence_variant"); SoNames.add("stop_lost"); } } } else { if (transcriptStart < genomicCodingStart || (transcriptFlags != null && transcriptFlags.contains("cds_end_NF"))) {// Check transcript has 3 UTR) SoNames.add("3_prime_UTR_variant"); } } } } private void solveJunction(Boolean isInsertion, Integer spliceSite1, Integer spliceSite2, Integer variantStart, Integer variantEnd, HashSet<String> SoNames, String leftSpliceSiteTag, String rightSpliceSiteTag, Boolean[] junctionSolution) { junctionSolution[0] = false; // Is splicing variant in non-coding region junctionSolution[1] = false; // Variant is intronic and both ends fall within the intron Boolean isDonorAcceptor = false; if (regionsOverlap(spliceSite1 + 2, spliceSite2 - 2, variantStart, variantEnd)) { // Variant overlaps the rest of intronic region (splice region within the intron and/or rest of intron) SoNames.add("intron_variant"); } if (variantStart >= spliceSite1 && variantEnd <= spliceSite2) { junctionSolution[1] = true; // variant start & end fall within the intron } if (regionsOverlap(spliceSite1, spliceSite1 + 1, variantStart, variantEnd)) { // Variant donor/acceptor if ((variantEnd - variantStart) <= bigVariantSizeThreshold) { // Big deletions should not be annotated with such a detail if (isInsertion) { // Insertion coordinates are passed to this function as (variantStart-1,variantStart) if (variantEnd.equals(spliceSite1)) { // Insertion between last nt of the exon (3' end), first nt of the intron (5' end) SoNames.add("splice_region_variant"); // Inserted nts considered part of the coding sequence } else if (variantEnd.equals(spliceSite1 + 2)) { SoNames.add("splice_region_variant"); // Inserted nts considered out of the donor/acceptor region junctionSolution[0] = (spliceSite2 > variantStart); // BE CAREFUL: there are introns shorter than 7nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } else { SoNames.add(leftSpliceSiteTag); // donor/acceptor depending on transcript strand junctionSolution[0] = (spliceSite2 > variantStart); // BE CAREFUL: there are introns shorter than 7nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } } else { SoNames.add(leftSpliceSiteTag); // donor/acceptor depending on transcript strand junctionSolution[0] = (variantStart <= spliceSite2 || variantEnd <= spliceSite2); // BE CAREFUL: there are introns shorter than 7nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } } else { junctionSolution[0] = (variantStart <= spliceSite2 || variantEnd <= spliceSite2); // BE CAREFUL: there are introns shorter than 7nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } } else { if (regionsOverlap(spliceSite1 + 2, spliceSite1 + 7, variantStart, variantEnd)) { if (((variantEnd - variantStart) <= bigVariantSizeThreshold) && // Big deletions should not be annotated with such a detail !(isInsertion && (variantStart == (spliceSite1 + 7)))) { // Insertion coordinates are passed to this function as (variantStart-1,variantStart) SoNames.add("splice_region_variant"); } junctionSolution[0] = (variantStart <= spliceSite2 || variantEnd <= spliceSite2); // BE CAREFUL: there are introns shorter than 7nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } else { if (regionsOverlap(spliceSite1 - 3, spliceSite1 - 1, variantStart, variantEnd) && ((variantEnd - variantStart) <= bigVariantSizeThreshold) && // Big deletions should not be annotated with such a detail !(isInsertion && (variantEnd == (spliceSite1 - 3)))) { // Insertion coordinates are passed to this function as (variantStart-1,variantStart) SoNames.add("splice_region_variant"); } } } if (regionsOverlap(spliceSite2 - 1, spliceSite2, variantStart, variantEnd)) { // Variant donor/acceptor if ((variantEnd - variantStart) <= bigVariantSizeThreshold) { // Big deletions should not be annotated with such a detail if (isInsertion) { // Insertions are peculiar in VEP annotation (draw it to understand) if (variantStart.equals(spliceSite2)) { // Insertion between last nt of the intron (3' end), first nt of the exon (5' end) SoNames.add("splice_region_variant"); // Inserted nts considered part of the coding sequence } else if (variantStart == (spliceSite2 - 2)) { SoNames.add("splice_region_variant"); // Inserted nts considered out of the donor/acceptor region junctionSolution[0] = (spliceSite1 < variantEnd); // BE CAREFUL: there are introns shorter than 14nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } else { SoNames.add(rightSpliceSiteTag); // donor/acceptor depending on transcript strand junctionSolution[0] = (spliceSite1 < variantEnd); // BE CAREFUL: there are introns shorter than 14nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } } else { SoNames.add(rightSpliceSiteTag); // donor/acceptor depending on transcript strand junctionSolution[0] = (spliceSite1 <= variantStart || spliceSite1 <= variantEnd); // BE CAREFUL: there are introns shorter than 7nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } } else { junctionSolution[0] = (spliceSite1 <= variantStart || spliceSite1 <= variantEnd); // BE CAREFUL: there are introns shorter than 7nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } } else { if (regionsOverlap(spliceSite2 - 7, spliceSite2 - 2, variantStart, variantEnd)) { if (((variantEnd - variantStart) <= bigVariantSizeThreshold) && // Big deletions should not be annotated with such a detail !(isInsertion && (variantEnd == (spliceSite2 - 7)))) { // Insertion coordinates are passed to this function as (variantStart-1,variantStart) { SoNames.add("splice_region_variant"); } junctionSolution[0] = (spliceSite1 <= variantStart || spliceSite1 <= variantEnd); // BE CAREFUL: there are introns shorter than 7nts, and even just 1nt long!! (22:36587846) // junctionSolution[0] = true; } else { if (regionsOverlap(spliceSite2 + 1, spliceSite2 + 3, variantStart, variantEnd) && ((variantEnd - variantStart) <= bigVariantSizeThreshold) && // Big deletions should not be annotated with such a detail !(isInsertion && (variantStart == (spliceSite2 + 3)))) { // Insertion coordinates are passed to this function as (variantStart-1,variantStart) { SoNames.add("splice_region_variant"); } } } // if(regionsOverlap(spliceSite1-3,spliceSite2+3,variantStart,variantEnd)) { // Variant is intronic and/or splicing // if (regionsOverlap(spliceSite1 - 3, spliceSite1 + 7, variantStart, variantEnd)) { // Variant within left splicing region // if (regionsOverlap(spliceSite1, spliceSite1 + 1, variantStart, variantEnd)) { // if((variantEnd-variantStart)<=bigVariantSizeThreshold) { // Big deletions should not be annotated with such a detail // SoNames.add(leftSpliceSiteTag); // donor/acceptor depending on transcript strand // isDonorAcceptor = true; // } // junctionSolution[0] = true; // } else { // if((variantEnd-variantStart)<=bigVariantSizeThreshold) { // Big deletions should not be annotated with such a detail // SoNames.add("splice_region_variant"); // } // if(variantEnd>=spliceSite1) { // At least one portion of the variant affects the non-coding region // junctionSolution[0] = true; // } // } // } // if (regionsOverlap(spliceSite2 - 7, spliceSite2 + 3, variantStart, variantEnd)) { // Variant within right splicing region // if (regionsOverlap(spliceSite2 - 1, spliceSite2, variantStart, variantEnd)) { // if((variantEnd-variantStart)<=bigVariantSizeThreshold) { // Big deletions should not be annotated with such a detail // SoNames.add(rightSpliceSiteTag); // donor/acceptor depending on transcript strand // isDonorAcceptor = true; // } // junctionSolution[0] = true; // } else { // if((variantEnd-variantStart)<=bigVariantSizeThreshold) { // Big deletions should not be annotated with such a detail // SoNames.add("splice_region_variant"); // } // if(variantStart<=spliceSite2) { // At least one portion of the variant affects the non-coding region // junctionSolution[0] = true; // } // } // } // if(variantStart>=spliceSite1 && variantEnd<=spliceSite2) { // junctionSolution[1] = true; // variant start & end fall within the intron // } //// if(regionsOverlap(spliceSite1, spliceSite2, variantStart, variantEnd)) { // no intronic annotation added already. Variant out of splice region limits // if(!isDonorAcceptor && regionsOverlap(spliceSite1, spliceSite2, variantStart, variantEnd)) { // no intronic annotation added already. Variant out of splice region limits // SoNames.add("intron_variant"); // } // } } @Override public QueryResult getAllConsequenceTypesByVariant(GenomicVariant variant, QueryOptions options) { Logger logger = LoggerFactory.getLogger(this.getClass()); HashSet<String> SoNames = new HashSet<>(); List<ConsequenceType> consequenceTypeList = new ArrayList<>(); QueryResult queryResult = new QueryResult(); QueryBuilder builderGene = null; QueryBuilder builderRegulatory = null; BasicDBList transcriptInfoList = null; BasicDBList exonInfoList; BasicDBObject miRnaInfo; BasicDBObject transcriptInfo, exonInfo; BasicDBObject geneInfo; BasicDBObject regulatoryInfo; Integer geneStart, geneEnd, transcriptStart, transcriptEnd, exonStart, exonEnd, genomicCodingStart, genomicCodingEnd; Integer cdnaCodingStart, cdnaCodingEnd, cdnaExonStart, cdnaExonEnd, cdnaVariantStart, cdnaVariantEnd, prevSpliceSite; Integer regulatoryStart, regulatoryEnd, cdsLength; Integer variantStart; Integer variantEnd; String geneStrand, transcriptStrand, exonSequence, transcriptSequence; String regulatoryChromosome, regulatoryType; String nextCodonNucleotides = ""; String ensemblTranscriptId; String geneName; String ensemblGeneId; int transcriptBiotype; long dbTimeStart, dbTimeEnd; Boolean splicing, coding, exonsRemain, variantAhead, exonVariant, TFBSFound; int exonCounter, i; ConsequenceType consequenceTypeTemplate = new ConsequenceType(); variantEnd = variant.getPosition() + variant.getReference().length() - 1; //TODO: Check deletion input format to ensure that variantEnd is correctly calculated Boolean isInsertion = variant.getReference().equals("-"); if (isInsertion) { variantStart = variant.getPosition() - 1; } else { variantStart = variant.getPosition(); } // builderGene = QueryBuilder.start("chromosome").is(variant.getChromosome()).and("end") // .greaterThanEquals(variant.getPosition() - 5000).and("start").lessThanEquals(variantEnd + 5000); // variantEnd is used rather than variant.getPosition() to account for deletions which end falls within the 5kb left area of the gene // Get all regulatory regions surrounding the variant // String chunkId = getChunkIdPrefix(variant.getChromosome(), variant.getPosition(), regulatoryRegionChunkSize); // BasicDBList chunksId = new BasicDBList(); // chunksId.add(chunkId); // builderRegulatory = QueryBuilder.start("chunkIds").in(chunksId).and("start").lessThanEquals(variantEnd).and("end") // .greaterThanEquals(variant.getPosition()); // variantEnd is used rather than variant.getPosition() to account for deletions which end falls within the 5kb left area of the gene // Execute query and calculate time // mongoDBCollection = db.getCollection("gene"); dbTimeStart = System.currentTimeMillis(); // QueryResult geneQueryResult = executeQuery(variant.toString(), builderGene.get(), options); QueryOptions geneQueryOptions = new QueryOptions(); geneQueryOptions.add("include", "name,id,transcripts.id,transcripts.start,transcripts.end,transcripts.strand,transcripts.cdsLength,transcripts.annotationFlags,transcripts.biotype,transcripts.genomicCodingStart,transcripts.genomicCodingEnd,transcripts.cdnaCodingStart,transcripts.cdnaCodingEnd,transcripts.exons.start,transcripts.exons.end,transcripts.exons.sequence,transcripts.exons.phase,mirna.matures,mirna.sequence,mirna.matures.cdnaStart,mirna.matures.cdnaEnd"); QueryResult geneQueryResult = geneDBAdaptor.getAllByRegion( new Region(variant.getChromosome(), variantStart - 5000, variantEnd + 5000), geneQueryOptions); // mongoDBCollection = db.getCollection("regulatory_region"); // QueryResult regulatoryQueryResult = executeQuery(variant.toString(), builderRegulatory.get(), options); QueryResult regulatoryQueryResult = regulatoryRegionDBAdaptor .getAllByRegion(new Region(variant.getChromosome(), variantStart, variantEnd), options); dbTimeEnd = System.currentTimeMillis(); LinkedList geneInfoList = (LinkedList) geneQueryResult.getResult(); // BasicDBList geneInfoList = (BasicDBList) geneQueryResult.getResult(); for (Object geneInfoObject : geneInfoList) { geneInfo = (BasicDBObject) geneInfoObject; consequenceTypeTemplate.setGeneName((String) geneInfo.get("name")); consequenceTypeTemplate.setEnsemblGeneId((String) geneInfo.get("id")); transcriptInfoList = (BasicDBList) geneInfo.get("transcripts"); for (Object transcriptInfoObject : transcriptInfoList) { transcriptInfo = (BasicDBObject) transcriptInfoObject; ensemblTranscriptId = (String) transcriptInfo.get("id"); transcriptStart = (Integer) transcriptInfo.get("start"); transcriptEnd = (Integer) transcriptInfo.get("end"); transcriptStrand = (String) transcriptInfo.get("strand"); cdsLength = (Integer) transcriptInfo.get("cdsLength"); BasicDBList transcriptFlags = (BasicDBList) transcriptInfo.get("annotationFlags"); try { transcriptBiotype = biotypes.get((String) transcriptInfo.get("biotype")); } catch (NullPointerException e) { // logger.info("WARNING: biotype not found within the list of hardcoded biotypes - "+transcriptInfo.get("biotype")); // logger.info("WARNING: transcript: "+ensemblTranscriptId); // logger.info("WARNING: setting transcript biotype to non_coding "); transcriptBiotype = 45; } SoNames.clear(); consequenceTypeTemplate.setEnsemblTranscriptId(ensemblTranscriptId); consequenceTypeTemplate.setcDnaPosition(null); consequenceTypeTemplate.setCdsPosition(null); consequenceTypeTemplate.setAaPosition(null); consequenceTypeTemplate.setAaChange(null); consequenceTypeTemplate.setCodon(null); consequenceTypeTemplate.setStrand((String) geneInfo.get("strand")); consequenceTypeTemplate.setBiotype((String) transcriptInfo.get("biotype")); consequenceTypeTemplate.setProteinSubstitutionScores(null); miRnaInfo = null; if (transcriptStrand.equals("+")) { if (variantStart <= transcriptStart && variantEnd >= transcriptEnd) { // Deletion - whole transcript removed consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), Collections.singletonList("transcript_ablation"))); } else { // Check variant overlaps transcript start/end coordinates if (regionsOverlap(transcriptStart, transcriptEnd, variantStart, variantEnd) && !(isInsertion && (variantEnd.equals(transcriptStart) || // Insertion just before the first transcript nt variantStart.equals(transcriptEnd)))) { // Insertion just after the last transcript nt if ((variantEnd - variantStart) > bigVariantSizeThreshold) { // Big deletion SoNames.add("feature_truncation"); } switch (transcriptBiotype) { /** * Coding biotypes */ case 30: SoNames.add("NMD_transcript_variant"); case 1: case 3: case 4: case 6: case 10: // TR_C_gene case 11: // TR_D_gene case 12: // TR_J_gene case 14: // TR_V_gene case 20: case 23: // protein_coding case 34: // non_stop_decay case 36: case 50: // translated_unprocessed_pseudogene case 51: // LRG_gene solveCodingPositiveTranscript(isInsertion, variant, SoNames, transcriptInfo, transcriptStart, transcriptEnd, variantStart, variantEnd, cdsLength, transcriptFlags, consequenceTypeTemplate); consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), consequenceTypeTemplate.getcDnaPosition(), consequenceTypeTemplate.getCdsPosition(), consequenceTypeTemplate.getAaPosition(), consequenceTypeTemplate.getAaChange(), consequenceTypeTemplate.getCodon(), consequenceTypeTemplate.getProteinSubstitutionScores(), new ArrayList<>(SoNames))); break; /** * pseudogenes, antisense should not be annotated as non-coding genes */ case 39: case 40: case 41: case 42: case 43: case 44: case 49: solveNonCodingPositiveTranscript(isInsertion, variant, SoNames, transcriptInfo, transcriptStart, transcriptEnd, null, variantStart, variantEnd, consequenceTypeTemplate); consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), consequenceTypeTemplate.getcDnaPosition(), new ArrayList<>(SoNames))); break; /** * Non-coding biotypes */ case 18: // miRNA miRnaInfo = (BasicDBObject) geneInfo.get("mirna"); case 2: // case 5: // case 7: // IG_V_pseudogene case 13: case 15: case 0: // 3prime_overlapping_ncrna case 16: // antisense TODO: move to coding? case 17: // lincRNA case 19: case 21: // processed_pseudogene case 22: // processed_transcript case 24: // pseudogene case 25: case 26: // sense_intronic case 27: // sense_overlapping case 28: case 29: case 31: // unprocessed_pseudogene case 32: // transcribed_unprocessed_pseudogene case 33: // retained_intron case 35: // unitary_pseudogene case 37: // transcribed_processed_pseudogene case 38: case 45: case 46: case 47: case 48: solveNonCodingPositiveTranscript(isInsertion, variant, SoNames, transcriptInfo, transcriptStart, transcriptEnd, miRnaInfo, variantStart, variantEnd, consequenceTypeTemplate); consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), consequenceTypeTemplate.getcDnaPosition(), new ArrayList<>(SoNames))); break; } } else { solveTranscriptFlankingRegions(SoNames, transcriptStart, transcriptEnd, variantStart, variantEnd, "upstream_gene_variant", "downstream_gene_variant"); if (SoNames.size() > 0) { // Variant does not overlap gene region, just may have upstream/downstream annotations consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), new ArrayList<>(SoNames))); } } } } else { if (variantStart <= transcriptStart && variantEnd >= transcriptEnd) { // Deletion - whole transcript removed consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), Collections.singletonList("transcript_ablation"))); } else { // Check overlaps transcript start/end coordinates if (regionsOverlap(transcriptStart, transcriptEnd, variantStart, variantEnd) && !(isInsertion && (variantEnd.equals(transcriptStart) || // Insertion just before the first transcript nt variantStart.equals(transcriptEnd)))) { // Insertion just after the last transcript nt if ((variantEnd - variantStart) > bigVariantSizeThreshold) { // Big deletion SoNames.add("feature_truncation"); } switch (transcriptBiotype) { /** * Coding biotypes */ case 30: SoNames.add("NMD_transcript_variant"); case 1: case 3: case 4: case 6: case 10: // TR_C_gene case 11: // TR_D_gene case 12: // TR_J_gene case 14: // TR_V_gene case 20: case 23: case 34: // non_stop_decay case 36: case 50: // translated_unprocessed_pseudogene case 51: // LRG_gene solveCodingNegativeTranscript(isInsertion, variant, SoNames, transcriptInfo, transcriptStart, transcriptEnd, variantStart, variantEnd, cdsLength, transcriptFlags, consequenceTypeTemplate); consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), consequenceTypeTemplate.getcDnaPosition(), consequenceTypeTemplate.getCdsPosition(), consequenceTypeTemplate.getAaPosition(), consequenceTypeTemplate.getAaChange(), consequenceTypeTemplate.getCodon(), consequenceTypeTemplate.getProteinSubstitutionScores(), new ArrayList<>(SoNames))); break; /** * pseudogenes, antisense should not be annotated as non-coding genes */ case 39: case 40: case 41: case 42: case 43: case 44: case 49: solveNonCodingNegativeTranscript(isInsertion, variant, SoNames, transcriptInfo, transcriptStart, transcriptEnd, null, variantStart, variantEnd, consequenceTypeTemplate); consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), consequenceTypeTemplate.getcDnaPosition(), new ArrayList<>(SoNames))); break; /** * Non-coding biotypes */ case 18: // miRNA miRnaInfo = (BasicDBObject) geneInfo.get("mirna"); case 2: // case 5: // case 7: // IG_V_pseudogene case 13: case 15: case 0: // 3prime_overlapping_ncrna case 17: // lincRNA case 16: // antisense TODO: move to coding? case 19: case 21: // processed_pseudogene case 22: // processed_transcript case 24: // pseudogene case 25: case 26: // sense_intronic case 27: // sense_overlapping case 28: case 29: case 31: // unprocessed_pseudogene case 32: // transcribed_unprocessed_pseudogen case 33: // retained_intron case 35: // unitary_pseudogene case 37: // transcribed_processed_pseudogene case 38: case 45: case 46: case 47: case 48: solveNonCodingNegativeTranscript(isInsertion, variant, SoNames, transcriptInfo, transcriptStart, transcriptEnd, miRnaInfo, variantStart, variantEnd, consequenceTypeTemplate); consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), consequenceTypeTemplate.getcDnaPosition(), new ArrayList<>(SoNames))); break; } } else { solveTranscriptFlankingRegions(SoNames, transcriptStart, transcriptEnd, variantStart, variantEnd, "downstream_gene_variant", "upstream_gene_variant"); if (SoNames.size() > 0) { // Variant does not overlap gene region, just has upstream/downstream annotations consequenceTypeList.add(new ConsequenceType(consequenceTypeTemplate.getGeneName(), consequenceTypeTemplate.getEnsemblGeneId(), consequenceTypeTemplate.getEnsemblTranscriptId(), consequenceTypeTemplate.getStrand(), consequenceTypeTemplate.getBiotype(), new ArrayList<>(SoNames))); } } } } } } if (consequenceTypeList.size() == 0) { consequenceTypeList.add(new ConsequenceType("intergenic_variant")); } LinkedList regulatoryInfoList = (LinkedList) regulatoryQueryResult.getResult(); // BasicDBList regulatoryInfoList = (BasicDBList) regulatoryQueryResult.getResult(); if (!regulatoryInfoList.isEmpty()) { consequenceTypeList.add(new ConsequenceType("regulatory_region_variant")); i = 0; do { regulatoryInfo = (BasicDBObject) regulatoryInfoList.get(i); regulatoryType = (String) regulatoryInfo.get("featureType"); TFBSFound = regulatoryType.equals("TF_binding_site") || regulatoryType.equals("TF_binding_site_motif"); i++; } while (i < regulatoryInfoList.size() && !TFBSFound); if (TFBSFound) { consequenceTypeList.add(new ConsequenceType("TF_binding_site_variant")); } } else { int b; b = 1; } // if(transcriptInfoList == null) { // consequenceTypeList.add(new ConsequenceType("intergenic_variant")); // } // consequenceTypeList = filterConsequenceTypesBySoTerms(consequenceTypeList, options.getAsStringList("so")); // setting queryResult fields queryResult.setId(variant.toString()); queryResult.setDbTime(Long.valueOf(dbTimeEnd - dbTimeStart).intValue()); queryResult.setNumResults(consequenceTypeList.size()); queryResult.setResult(consequenceTypeList); return queryResult; } private List<ConsequenceType> filterConsequenceTypesBySoTerms(List<ConsequenceType> consequenceTypeList, List<String> querySoTerms) { for (Iterator<ConsequenceType> iterator = consequenceTypeList.iterator(); iterator.hasNext();) { ConsequenceType consequenceType = iterator.next(); if (!consequenceTypeContainsSoTerm(consequenceType, querySoTerms)) { iterator.remove(); } } return consequenceTypeList; } private boolean consequenceTypeContainsSoTerm(ConsequenceType consequenceType, List<String> querySoTerms) { boolean consequenceTypeHasSomeOfQuerySoTerms = false; for (ConsequenceType.ConsequenceTypeEntry consequenceTypeSoTerm : consequenceType.getSoTerms()) { if (querySoTerms.contains(consequenceTypeSoTerm)) { consequenceTypeHasSomeOfQuerySoTerms = true; break; } } return consequenceTypeHasSomeOfQuerySoTerms; } private void solveTranscriptFlankingRegions(HashSet<String> SoNames, Integer transcriptStart, Integer transcriptEnd, Integer variantStart, Integer variantEnd, String leftRegionTag, String rightRegionTag) { // Variant overlaps with -5kb region if (regionsOverlap(transcriptStart - 5000, transcriptStart - 1, variantStart, variantEnd)) { // Variant overlaps with -2kb region if (regionsOverlap(transcriptStart - 2000, transcriptStart - 1, variantStart, variantEnd)) { SoNames.add("2KB_" + leftRegionTag); } else { SoNames.add(leftRegionTag); } } // Variant overlaps with +5kb region if (regionsOverlap(transcriptEnd + 1, transcriptEnd + 5000, variantStart, variantEnd)) { // Variant overlaps with +2kb region if (regionsOverlap(transcriptEnd + 1, transcriptEnd + 2000, variantStart, variantEnd)) { SoNames.add("2KB_" + rightRegionTag); } else { SoNames.add(rightRegionTag); } } } private void solveCodingPositiveTranscript(Boolean isInsertion, GenomicVariant variant, HashSet<String> SoNames, BasicDBObject transcriptInfo, Integer transcriptStart, Integer transcriptEnd, Integer variantStart, Integer variantEnd, Integer cdsLength, BasicDBList transcriptFlags, ConsequenceType consequenceTypeTemplate) { Integer genomicCodingStart; Integer genomicCodingEnd; Integer cdnaCodingStart; Integer cdnaCodingEnd; BasicDBList exonInfoList; BasicDBObject exonInfo; Integer exonStart; Integer exonEnd; String transcriptSequence; Boolean variantAhead; Integer cdnaExonEnd; Integer cdnaVariantStart; Integer cdnaVariantEnd; Boolean splicing; int exonCounter; int firstCdsPhase = -1; Integer prevSpliceSite; Boolean[] junctionSolution = { false, false }; genomicCodingStart = (Integer) transcriptInfo.get("genomicCodingStart"); genomicCodingEnd = (Integer) transcriptInfo.get("genomicCodingEnd"); cdnaCodingStart = (Integer) transcriptInfo.get("cdnaCodingStart"); cdnaCodingEnd = (Integer) transcriptInfo.get("cdnaCodingEnd"); exonInfoList = (BasicDBList) transcriptInfo.get("exons"); exonInfo = (BasicDBObject) exonInfoList.get(0); exonStart = (Integer) exonInfo.get("start"); exonEnd = (Integer) exonInfo.get("end"); transcriptSequence = (String) exonInfo.get("sequence"); variantAhead = true; // we need a first iteration within the while to ensure junction is solved in case needed cdnaExonEnd = (exonEnd - exonStart + 1); cdnaVariantStart = null; cdnaVariantEnd = null; junctionSolution[0] = false; junctionSolution[1] = false; splicing = false; if (firstCdsPhase == -1 && genomicCodingStart <= exonEnd) { firstCdsPhase = (int) exonInfo.get("phase"); } if (variantStart >= exonStart) { if (variantStart <= exonEnd) { // Variant start within the exon cdnaVariantStart = cdnaExonEnd - (exonEnd - variantStart); consequenceTypeTemplate.setcDnaPosition(cdnaVariantStart); if (variantEnd <= exonEnd) { // Both variant start and variant end within the exon ----||||S|||||E||||---- cdnaVariantEnd = cdnaExonEnd - (exonEnd - variantEnd); } } } else { if (variantEnd <= exonEnd) { // if(variantEnd >= exonStart) { // Only variant end within the exon ----||||||||||E||||---- // We do not contemplate that variant end can be located before this exon since this is the first exon cdnaVariantEnd = cdnaExonEnd - (exonEnd - variantEnd); // } } // Variant includes the whole exon. Variant start is located before the exon, variant end is located after the exon } exonCounter = 1; while (exonCounter < exonInfoList.size() && variantAhead) { // This is not a do-while since we cannot call solveJunction until // while(exonCounter<exonInfoList.size() && !splicing && variantAhead) { // This is not a do-while since we cannot call solveJunction until exonInfo = (BasicDBObject) exonInfoList.get(exonCounter); // next exon has been loaded exonStart = (Integer) exonInfo.get("start"); prevSpliceSite = exonEnd + 1; exonEnd = (Integer) exonInfo.get("end"); transcriptSequence = transcriptSequence + ((String) exonInfo.get("sequence")); if (firstCdsPhase == -1 && genomicCodingStart <= exonEnd) { // Set firsCdsPhase only when the first coding exon is reached firstCdsPhase = (int) exonInfo.get("phase"); } solveJunction(isInsertion, prevSpliceSite, exonStart - 1, variantStart, variantEnd, SoNames, "splice_donor_variant", "splice_acceptor_variant", junctionSolution); splicing = (splicing || junctionSolution[0]); if (variantStart >= exonStart) { cdnaExonEnd += (exonEnd - exonStart + 1); if (variantStart <= exonEnd) { // Variant start within the exon cdnaVariantStart = cdnaExonEnd - (exonEnd - variantStart); consequenceTypeTemplate.setcDnaPosition(cdnaVariantStart); if (variantEnd <= exonEnd) { // Both variant start and variant end within the exon ----||||S|||||E||||---- cdnaVariantEnd = cdnaExonEnd - (exonEnd - variantEnd); } } } else { if (variantEnd <= exonEnd) { if (variantEnd >= exonStart) { // Only variant end within the exon ----||||||||||E||||---- cdnaExonEnd += (exonEnd - exonStart + 1); cdnaVariantEnd = cdnaExonEnd - (exonEnd - variantEnd); } else { // Variant does not include this exon, variant is located before this exon variantAhead = false; } } else { // Variant includes the whole exon. Variant start is located before the exon, variant end is located after the exon cdnaExonEnd += (exonEnd - exonStart + 1); } } exonCounter++; } // Is not intron variant (both ends fall within the same intron) if (!junctionSolution[1]) { if (isInsertion) { if (cdnaVariantStart == null && cdnaVariantEnd != null) { // To account for those insertions in the 3' end of an intron cdnaVariantStart = cdnaVariantEnd - 1; } else if (cdnaVariantEnd == null && cdnaVariantStart != null) { // To account for those insertions in the 5' end of an intron cdnaVariantEnd = cdnaVariantStart + 1; } } solveCodingPositiveTranscriptEffect(splicing, transcriptSequence, transcriptStart, transcriptEnd, genomicCodingStart, genomicCodingEnd, variantStart, variantEnd, cdnaCodingStart, cdnaCodingEnd, cdnaVariantStart, cdnaVariantEnd, // Be careful, originalVariantStart is used here! cdsLength, transcriptFlags, firstCdsPhase, variant.getReference(), variant.getAlternative(), SoNames, consequenceTypeTemplate); } } private void solveCodingNegativeTranscript(Boolean isInsertion, GenomicVariant variant, HashSet<String> SoNames, BasicDBObject transcriptInfo, Integer transcriptStart, Integer transcriptEnd, Integer variantStart, Integer variantEnd, Integer cdsLength, BasicDBList transcriptFlags, ConsequenceType consequenceTypeTemplate) { Integer genomicCodingStart; Integer genomicCodingEnd; Integer cdnaCodingStart; Integer cdnaCodingEnd; BasicDBList exonInfoList; BasicDBObject exonInfo; Integer exonStart; Integer exonEnd; String transcriptSequence; Boolean variantAhead; Integer cdnaExonEnd; Integer cdnaVariantStart; Integer cdnaVariantEnd; Boolean splicing; int exonCounter; int firstCdsPhase = -1; Integer prevSpliceSite; Boolean[] junctionSolution = { false, false }; genomicCodingStart = (Integer) transcriptInfo.get("genomicCodingStart"); genomicCodingEnd = (Integer) transcriptInfo.get("genomicCodingEnd"); cdnaCodingStart = (Integer) transcriptInfo.get("cdnaCodingStart"); cdnaCodingEnd = (Integer) transcriptInfo.get("cdnaCodingEnd"); exonInfoList = (BasicDBList) transcriptInfo.get("exons"); exonInfo = (BasicDBObject) exonInfoList.get(0); exonStart = (Integer) exonInfo.get("start"); exonEnd = (Integer) exonInfo.get("end"); transcriptSequence = (String) exonInfo.get("sequence"); variantAhead = true; // we need a first iteration within the while to ensure junction is solved in case needed cdnaExonEnd = (exonEnd - exonStart + 1); // cdnaExonEnd poinst to the same base than exonStart cdnaVariantStart = null; // cdnaVariantStart points to the same base than variantEnd cdnaVariantEnd = null; // cdnaVariantEnd points to the same base than variantStart junctionSolution[0] = false; junctionSolution[1] = false; splicing = false; if (firstCdsPhase == -1 && genomicCodingEnd >= exonStart) { firstCdsPhase = (int) exonInfo.get("phase"); } if (variantEnd <= exonEnd) { if (variantEnd >= exonStart) { // Variant end within the exon cdnaVariantStart = cdnaExonEnd - (variantEnd - exonStart); consequenceTypeTemplate.setcDnaPosition(cdnaVariantStart); if (variantStart >= exonStart) { // Both variant start and variant end within the exon ----||||S|||||E||||---- cdnaVariantEnd = cdnaExonEnd - (variantStart - exonStart); } } } else { if (variantStart >= exonStart) { // if(variantEnd >= exonStart) { // Only variant end within the exon ----||||||||||E||||---- // We do not contemplate that variant end can be located before this exon since this is the first exon cdnaVariantEnd = cdnaExonEnd - (variantEnd - exonStart); // } } // Variant includes the whole exon. Variant end is located before the exon, variant start is located after the exon } exonCounter = 1; while (exonCounter < exonInfoList.size() && variantAhead) { // This is not a do-while since we cannot call solveJunction until // while(exonCounter<exonInfoList.size() && !splicing && variantAhead) { // This is not a do-while since we cannot call solveJunction until exonInfo = (BasicDBObject) exonInfoList.get(exonCounter); // next exon has been loaded prevSpliceSite = exonStart - 1; exonStart = (Integer) exonInfo.get("start"); exonEnd = (Integer) exonInfo.get("end"); transcriptSequence = ((String) exonInfo.get("sequence")) + transcriptSequence; if (firstCdsPhase == -1 && genomicCodingEnd >= exonStart) { // Set firsCdsPhase only when the first coding exon is reached firstCdsPhase = (int) exonInfo.get("phase"); } solveJunction(isInsertion, exonEnd + 1, prevSpliceSite, variantStart, variantEnd, SoNames, "splice_acceptor_variant", "splice_donor_variant", junctionSolution); splicing = (splicing || junctionSolution[0]); if (variantEnd <= exonEnd) { cdnaExonEnd += (exonEnd - exonStart + 1); if (variantEnd >= exonStart) { // Variant end within the exon cdnaVariantStart = cdnaExonEnd - (variantEnd - exonStart); consequenceTypeTemplate.setcDnaPosition(cdnaVariantStart); if (variantStart >= exonStart) { // Both variant start and variant end within the exon ----||||S|||||E||||---- cdnaVariantEnd = cdnaExonEnd - (variantStart - exonStart); } } } else { if (variantStart >= exonStart) { if (variantStart <= exonEnd) { // Only variant start within the exon ----||||||||||E||||---- cdnaExonEnd += (exonEnd - exonStart + 1); cdnaVariantEnd = cdnaExonEnd - (variantStart - exonStart); } else { // Variant does not include this exon, variant is located before this exon variantAhead = false; } } else { // Variant includes the whole exon. Variant start is located before the exon, variant end is located after the exon cdnaExonEnd += (exonEnd - exonStart + 1); } } exonCounter++; } // Is not intron variant (both ends fall within the same intron) if (!junctionSolution[1]) { if (isInsertion) { if (cdnaVariantStart == null && cdnaVariantEnd != null) { // To account for those insertions in the 3' end of an intron cdnaVariantStart = cdnaVariantEnd - 1; } else if (cdnaVariantEnd == null && cdnaVariantStart != null) { // To account for those insertions in the 5' end of an intron cdnaVariantEnd = cdnaVariantStart + 1; } } solveCodingNegativeTranscriptEffect(splicing, transcriptSequence, transcriptStart, transcriptEnd, genomicCodingStart, genomicCodingEnd, variantStart, variantEnd, cdnaCodingStart, cdnaCodingEnd, cdnaVariantStart, cdnaVariantEnd, cdsLength, transcriptFlags, firstCdsPhase, variant.getReference(), variant.getAlternative(), SoNames, consequenceTypeTemplate); } } private void solveNonCodingPositiveTranscript(Boolean isInsertion, GenomicVariant variant, HashSet<String> SoNames, BasicDBObject transcriptInfo, Integer transcriptStart, Integer transcriptEnd, BasicDBObject miRnaInfo, Integer variantStart, Integer variantEnd, ConsequenceType consequenceTypeTemplate) { BasicDBList exonInfoList; BasicDBObject exonInfo; Integer exonStart; Integer exonEnd; String transcriptSequence; Boolean variantAhead; Integer cdnaExonEnd; Integer cdnaVariantStart; Integer cdnaVariantEnd; Boolean splicing; int exonCounter; Integer prevSpliceSite; Boolean[] junctionSolution = { false, false }; exonInfoList = (BasicDBList) transcriptInfo.get("exons"); exonInfo = (BasicDBObject) exonInfoList.get(0); exonStart = (Integer) exonInfo.get("start"); exonEnd = (Integer) exonInfo.get("end"); transcriptSequence = (String) exonInfo.get("sequence"); variantAhead = true; // we need a first iteration within the while to ensure junction is solved in case needed cdnaExonEnd = (exonEnd - exonStart + 1); cdnaVariantStart = null; cdnaVariantEnd = null; junctionSolution[0] = false; junctionSolution[1] = false; splicing = false; if (variantStart >= exonStart) { if (variantStart <= exonEnd) { // Variant start within the exon. Set cdnaPosition in consequenceTypeTemplate cdnaVariantStart = cdnaExonEnd - (exonEnd - variantStart); consequenceTypeTemplate.setcDnaPosition(cdnaVariantStart); if (variantEnd <= exonEnd) { // Both variant start and variant end within the exon ----||||S|||||E||||---- cdnaVariantEnd = cdnaExonEnd - (exonEnd - variantEnd); } } } else { if (variantEnd <= exonEnd) { // if(variantEnd >= exonStart) { // Only variant end within the exon ----||||||||||E||||---- // We do not contemplate that variant end can be located before this exon since this is the first exon cdnaVariantEnd = cdnaExonEnd - (exonEnd - variantEnd); // } } // Variant includes the whole exon. Variant start is located before the exon, variant end is located after the exon } exonCounter = 1; while (exonCounter < exonInfoList.size() && variantAhead) { // This is not a do-while since we cannot call solveJunction until // while(exonCounter<exonInfoList.size() && !splicing && variantAhead) { // This is not a do-while since we cannot call solveJunction until exonInfo = (BasicDBObject) exonInfoList.get(exonCounter); // next exon has been loaded exonStart = (Integer) exonInfo.get("start"); prevSpliceSite = exonEnd + 1; exonEnd = (Integer) exonInfo.get("end"); transcriptSequence = transcriptSequence + ((String) exonInfo.get("sequence")); solveJunction(isInsertion, prevSpliceSite, exonStart - 1, variantStart, variantEnd, SoNames, "splice_donor_variant", "splice_acceptor_variant", junctionSolution); splicing = (splicing || junctionSolution[0]); if (variantStart >= exonStart) { cdnaExonEnd += (exonEnd - exonStart + 1); if (variantStart <= exonEnd) { // Variant start within the exon. Set cdnaPosition in consequenceTypeTemplate cdnaVariantStart = cdnaExonEnd - (exonEnd - variantStart); consequenceTypeTemplate.setcDnaPosition(cdnaVariantStart); if (variantEnd <= exonEnd) { // Both variant start and variant end within the exon ----||||S|||||E||||---- cdnaVariantEnd = cdnaExonEnd - (exonEnd - variantEnd); } } } else { if (variantEnd <= exonEnd) { if (variantEnd >= exonStart) { // Only variant end within the exon ----||||||||||E||||---- cdnaVariantEnd = cdnaExonEnd - (exonEnd - variantEnd); } else { // Variant does not include this exon, variant is located before this exon variantAhead = false; } } else { // Variant includes the whole exon. Variant start is located before the exon, variant end is located after the exon cdnaExonEnd += (exonEnd - exonStart + 1); } } exonCounter++; } if (miRnaInfo != null) { // miRNA with miRBase data BasicDBList matureMiRnaInfo = (BasicDBList) miRnaInfo.get("matures"); if (cdnaVariantStart == null) { // Probably deletion starting before the miRNA location cdnaVariantStart = 1; // Truncate to the first transcript position to avoid null exception } if (cdnaVariantEnd == null) { // Probably deletion ending after the miRNA location cdnaVariantEnd = ((String) miRnaInfo.get("sequence")).length(); // Truncate to the last transcript position to avoid null exception } int i = 0; while (i < matureMiRnaInfo.size() && !regionsOverlap((Integer) ((BasicDBObject) matureMiRnaInfo.get(i)).get("cdnaStart"), (Integer) ((BasicDBObject) matureMiRnaInfo.get(i)).get("cdnaEnd"), cdnaVariantStart, cdnaVariantEnd)) { i++; } if (i < matureMiRnaInfo.size()) { // Variant overlaps at least one mature miRNA SoNames.add("mature_miRNA_variant"); } else { if (!junctionSolution[1]) { // Exon variant SoNames.add("non_coding_transcript_exon_variant"); } SoNames.add("non_coding_transcript_variant"); } } else { if (!junctionSolution[1]) { // Exon variant SoNames.add("non_coding_transcript_exon_variant"); } SoNames.add("non_coding_transcript_variant"); } } private void solveNonCodingNegativeTranscript(Boolean isInsertion, GenomicVariant variant, HashSet<String> SoNames, BasicDBObject transcriptInfo, Integer transcriptStart, Integer transcriptEnd, BasicDBObject miRnaInfo, Integer variantStart, Integer variantEnd, ConsequenceType consequenceTypeTemplate) { BasicDBList exonInfoList; BasicDBObject exonInfo; Integer exonStart; Integer exonEnd; String transcriptSequence; Boolean variantAhead; Integer cdnaExonEnd; Integer cdnaVariantStart; Integer cdnaVariantEnd; Boolean splicing; int exonCounter; Integer prevSpliceSite; Boolean[] junctionSolution = { false, false }; exonInfoList = (BasicDBList) transcriptInfo.get("exons"); exonInfo = (BasicDBObject) exonInfoList.get(0); exonStart = (Integer) exonInfo.get("start"); exonEnd = (Integer) exonInfo.get("end"); transcriptSequence = (String) exonInfo.get("sequence"); variantAhead = true; // we need a first iteration within the while to ensure junction is solved in case needed cdnaExonEnd = (exonEnd - exonStart + 1); // cdnaExonEnd poinst to the same base than exonStart cdnaVariantStart = null; // cdnaVariantStart points to the same base than variantEnd cdnaVariantEnd = null; // cdnaVariantEnd points to the same base than variantStart junctionSolution[0] = false; junctionSolution[1] = false; splicing = false; if (variantEnd <= exonEnd) { if (variantEnd >= exonStart) { // Variant end within the exon cdnaVariantStart = cdnaExonEnd - (variantEnd - exonStart); consequenceTypeTemplate.setcDnaPosition(cdnaVariantStart); if (variantStart >= exonStart) { // Both variant start and variant end within the exon ----||||S|||||E||||---- cdnaVariantEnd = cdnaExonEnd - (variantStart - exonStart); } } } else { if (variantStart >= exonStart) { // if(variantEnd >= exonStart) { // Only variant end within the exon ----||||||||||E||||---- // We do not contemplate that variant end can be located before this exon since this is the first exon cdnaVariantEnd = cdnaExonEnd - (variantEnd - exonStart); // } } // Variant includes the whole exon. Variant end is located before the exon, variant start is located after the exon } exonCounter = 1; while (exonCounter < exonInfoList.size() && variantAhead) { // This is not a do-while since we cannot call solveJunction until // while(exonCounter<exonInfoList.size() && !splicing && variantAhead) { // This is not a do-while since we cannot call solveJunction until exonInfo = (BasicDBObject) exonInfoList.get(exonCounter); // next exon has been loaded prevSpliceSite = exonStart - 1; exonStart = (Integer) exonInfo.get("start"); exonEnd = (Integer) exonInfo.get("end"); transcriptSequence = ((String) exonInfo.get("sequence")) + transcriptSequence; solveJunction(isInsertion, exonEnd + 1, prevSpliceSite, variantStart, variantEnd, SoNames, "splice_acceptor_variant", "splice_donor_variant", junctionSolution); splicing = (splicing || junctionSolution[0]); if (variantEnd <= exonEnd) { cdnaExonEnd += (exonEnd - exonStart + 1); if (variantEnd >= exonStart) { // Variant end within the exon cdnaVariantStart = cdnaExonEnd - (variantEnd - exonStart); consequenceTypeTemplate.setcDnaPosition(cdnaVariantStart); if (variantStart >= exonStart) { // Both variant start and variant end within the exon ----||||S|||||E||||---- cdnaVariantEnd = cdnaExonEnd - (variantStart - exonStart); } } } else { if (variantStart >= exonStart) { if (variantStart <= exonEnd) { // Only variant start within the exon ----||||||||||E||||---- cdnaVariantEnd = cdnaExonEnd - (variantStart - exonStart); } else { // Variant does not include this exon, variant is located before this exon variantAhead = false; } } else { // Variant includes the whole exon. Variant start is located before the exon, variant end is located after the exon cdnaExonEnd += (exonEnd - exonStart + 1); } } exonCounter++; } if (miRnaInfo != null) { // miRNA with miRBase data BasicDBList matureMiRnaInfo = (BasicDBList) miRnaInfo.get("matures"); int i = 0; while (i < matureMiRnaInfo.size() && !regionsOverlap((Integer) ((BasicDBObject) matureMiRnaInfo.get(i)).get("cdnaStart"), (Integer) ((BasicDBObject) matureMiRnaInfo.get(i)).get("cdnaEnd"), cdnaVariantStart, cdnaVariantEnd)) { i++; } if (i < matureMiRnaInfo.size()) { // Variant overlaps at least one mature miRNA SoNames.add("mature_miRNA_variant"); } else { if (!junctionSolution[1]) { // Exon variant SoNames.add("non_coding_transcript_exon_variant"); } SoNames.add("non_coding_transcript_variant"); } } else { if (!junctionSolution[1]) { // Exon variant SoNames.add("non_coding_transcript_exon_variant"); } SoNames.add("non_coding_transcript_variant"); } } @Override public List<QueryResult> getAllConsequenceTypesByVariantList(List<GenomicVariant> variants, QueryOptions options) { List<QueryResult> queryResults = new ArrayList<>(variants.size()); // try { for (GenomicVariant genomicVariant : variants) { queryResults.add(getAllConsequenceTypesByVariant(genomicVariant, options)); } // } catch (IOException e) { // e.printStackTrace(); // } return queryResults; } @Override public QueryResult getAllEffectsByVariant(GenomicVariant variant, QueryOptions options) { return null; } @Override public List<QueryResult> getAllEffectsByVariantList(List<GenomicVariant> variants, QueryOptions options) { List<QueryResult> queryResults = new ArrayList<>(variants.size()); TabixReader currentTabix = null; String line = ""; long dbTimeStart, dbTimeEnd; String document = ""; try { // currentTabix = new TabixReader(applicationProperties.getProperty("VARIANT_ANNOTATION.FILENAME")); currentTabix = new TabixReader(""); for (GenomicVariant genomicVariant : variants) { System.out.println(">>>" + genomicVariant); TabixReader.Iterator it = currentTabix.query(genomicVariant.getChromosome() + ":" + genomicVariant.getPosition() + "-" + genomicVariant.getPosition()); String[] fields = null; dbTimeStart = System.currentTimeMillis(); while (it != null && (line = it.next()) != null) { fields = line.split("\t"); document = fields[2]; // System.out.println(fields[2]); // listRecords = factory.create(source, line); // if(listRecords.size() > 0){ // // tabixRecord = listRecords.get(0); // // if (tabixRecord.getReference().equals(record.getReference()) && tabixRecord.getAlternate().equals(record.getAlternate())) { // controlBatch.add(tabixRecord); // map.put(record, cont++); // } // } break; } // List<GenomicVariantEffect> a = genomicVariantEffectPredictor.getAllEffectsByVariant(variants.get(0), genes, null); dbTimeEnd = System.currentTimeMillis(); QueryResult queryResult = new QueryResult(); queryResult.setDbTime(Long.valueOf(dbTimeEnd - dbTimeStart).intValue()); queryResult.setNumResults(1); // queryResult.setResult(document); // FIXME Quick fix queryResult.setResult(Arrays.asList(document)); queryResults.add(queryResult); } } catch (IOException e) { e.printStackTrace(); } return queryResults; } public List<QueryResult> getAnnotationByVariantList(List<GenomicVariant> variantList, QueryOptions queryOptions) { List<QueryResult> variationQueryResultList = variationDBAdaptor.getAllByVariantList(variantList, queryOptions); List<QueryResult> clinicalQueryResultList = clinicalDBAdaptor.getAllByGenomicVariantList(variantList, queryOptions); List<QueryResult> variationConsequenceTypeList = getAllConsequenceTypesByVariantList(variantList, queryOptions); List<QueryResult> conservedRegionQueryResultList = conservedRegionDBAdaptor .getAllScoresByRegionList(variantListToRegionList(variantList), queryOptions); VariantAnnotation variantAnnotation; Integer i = 0; for (QueryResult clinicalQueryResult : clinicalQueryResultList) { Map<String, Object> phenotype = new HashMap<>(); if (clinicalQueryResult.getResult() != null && clinicalQueryResult.getResult().size() > 0) { phenotype = (Map<String, Object>) clinicalQueryResult.getResult().get(0); } List<ConsequenceType> consequenceTypeList = (List<ConsequenceType>) variationConsequenceTypeList.get(i) .getResult(); // TODO: start & end are both being set to variantList.get(i).getPosition(), modify this for indels variantAnnotation = new VariantAnnotation(variantList.get(i).getChromosome(), variantList.get(i).getPosition(), variantList.get(i).getPosition(), variantList.get(i).getReference(), variantList.get(i).getAlternative()); variantAnnotation.setClinicalData(phenotype); variantAnnotation.setConsequenceTypes(consequenceTypeList); variantAnnotation .setConservedRegionScores((List<Score>) conservedRegionQueryResultList.get(i).getResult()); List<BasicDBObject> variationDBList = (List<BasicDBObject>) variationQueryResultList.get(i).getResult(); if (variationDBList != null && variationDBList.size() > 0) { String id = null; id = ((BasicDBObject) variationDBList.get(0)).get("id").toString(); variantAnnotation.setId(id); BasicDBList freqsDBList = null; if ((freqsDBList = (BasicDBList) ((BasicDBObject) variationDBList.get(0)) .get("populationFrequencies")) != null) { BasicDBObject freqDBObject; for (int j = 0; j < freqsDBList.size(); j++) { freqDBObject = ((BasicDBObject) freqsDBList.get(j)); variantAnnotation.addPopulationFrequency(new PopulationFrequency( freqDBObject.get("study").toString(), freqDBObject.get("pop").toString(), freqDBObject.get("superPop").toString(), freqDBObject.get("refAllele").toString(), freqDBObject.get("altAllele").toString(), Float.valueOf(freqDBObject.get("refAlleleFreq").toString()), Float.valueOf(freqDBObject.get("altAlleleFreq").toString()))); } } } List<VariantAnnotation> value = Collections.singletonList(variantAnnotation); clinicalQueryResult.setResult(value); i++; } return clinicalQueryResultList; } private List<Region> variantListToRegionList(List<GenomicVariant> variantList) { List<Region> regionList = new ArrayList<>(variantList.size()); for (GenomicVariant variant : variantList) { regionList.add(new Region(variant.getChromosome(), variant.getPosition(), variant.getPosition())); } return regionList; } }