Java tutorial
/* * Copyright (c) 2017 NCIC, Institute of Computing Technology, Chinese Academy of Sciences * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package org.ncic.bioinfo.sparkseq.algorithms.utils; import org.apache.commons.math.distribution.ExponentialDistribution; import org.apache.commons.math.distribution.ExponentialDistributionImpl; import org.ncic.bioinfo.sparkseq.algorithms.utils.LRUCache; import org.ncic.bioinfo.sparkseq.exceptions.ReviewedGATKException; import java.math.BigDecimal; import java.util.*; /** * MathUtils is a static class (no instantiation allowed!) with some useful math methods. * * Author: wbc */ public class MathUtils { /** * Private constructor. No instantiating this class! */ private MathUtils() { } /** * The smallest log10 value we'll emit from normalizeFromLog10 and other functions * where the real-space value is 0.0. */ public static final double LOG10_P_OF_ZERO = -1000000.0; public static final double FAIR_BINOMIAL_PROB_LOG10_0_5 = Math.log10(0.5); public static final double LOG_ONE_HALF = -Math.log10(2.0); public static final double LOG_ONE_THIRD = -Math.log10(3.0); private static final double NATURAL_LOG_OF_TEN = Math.log(10.0); private static final double SQUARE_ROOT_OF_TWO_TIMES_PI = Math.sqrt(2.0 * Math.PI); /** * A helper class to maintain a cache of log10 values */ public static class Log10Cache { /** * Get the value of log10(n), expanding the cache as necessary * @param n operand * @return log10(n) */ public static double get(final int n) { if (n < 0) throw new ReviewedGATKException(String.format("Can't take the log of a negative number: %d", n)); if (n >= cache.length) ensureCacheContains(Math.max(n + 10, 2 * cache.length)); /* Array lookups are not atomic. It's possible that the reference to cache could be changed between the time the reference is loaded and the data is fetched from the correct offset. However, the value retrieved can't change, and it's guaranteed to be present in the old reference by the conditional above. */ return cache[n]; } /** * Ensures that the cache contains a value for n. After completion of ensureCacheContains(n), * #get(n) is guaranteed to return without causing a cache expansion * @param n desired value to be precomputed */ public static synchronized void ensureCacheContains(final int n) { if (n < cache.length) return; final double[] newCache = new double[n + 1]; System.arraycopy(cache, 0, newCache, 0, cache.length); for (int i = cache.length; i < newCache.length; i++) newCache[i] = Math.log10(i); cache = newCache; } //initialize with the special case: log10(0) = NEGATIVE_INFINITY private static double[] cache = new double[] { Double.NEGATIVE_INFINITY }; } /** * Get a random int between min and max (inclusive) using the global GATK random number generator * * @param min lower bound of the range * @param max upper bound of the range * @return a random int >= min and <= max */ public static int randomIntegerInRange(final int min, final int max) { return RandomGenerator.getRandomGenerator().nextInt(max - min + 1) + min; } /** * Encapsulates the second term of Jacobian log identity for differences up to MAX_TOLERANCE */ private static class JacobianLogTable { public static final double MAX_TOLERANCE = 8.0; public static double get(final double difference) { if (cache == null) initialize(); final int index = fastRound(difference * INV_STEP); return cache[index]; } private static synchronized void initialize() { if (cache == null) { final int tableSize = (int) (MAX_TOLERANCE / TABLE_STEP) + 1; cache = new double[tableSize]; for (int k = 0; k < cache.length; k++) cache[k] = Math.log10(1.0 + Math.pow(10.0, -((double) k) * TABLE_STEP)); } } private static final double TABLE_STEP = 0.0001; private static final double INV_STEP = 1.0 / TABLE_STEP; private static double[] cache = null; } // A fast implementation of the Math.round() method. This method does not perform // under/overflow checking, so this shouldn't be used in the general case (but is fine // if one is already make those checks before calling in to the rounding). public static int fastRound(final double d) { return (d > 0.0) ? (int) (d + 0.5d) : (int) (d - 0.5d); } public static double approximateLog10SumLog10(final double[] vals) { return approximateLog10SumLog10(vals, vals.length); } /** * Calculate the approximate log10 sum of an array range. * @param vals the input values. * @param fromIndex the first inclusive index in the input array. * @param toIndex index following the last element to sum in the input array (exclusive). * @return the approximate sum. * @throws IllegalArgumentException if {@code vals} is {@code null} or {@code fromIndex} is out of bounds * or if {@code toIndex} is larger than * the length of the input array or {@code fromIndex} is larger than {@code toIndex}. */ public static double approximateLog10SumLog10(final double[] vals, final int fromIndex, final int toIndex) { if (fromIndex == toIndex) return Double.NEGATIVE_INFINITY; final int maxElementIndex = MathUtils.maxElementIndex(vals, fromIndex, toIndex); double approxSum = vals[maxElementIndex]; for (int i = fromIndex; i < toIndex; i++) { final double val; if (i == maxElementIndex || (val = vals[i]) == Double.NEGATIVE_INFINITY) continue; final double diff = approxSum - val; if (diff < JacobianLogTable.MAX_TOLERANCE) approxSum += JacobianLogTable.get(diff); } return approxSum; } public static double approximateLog10SumLog10(final double[] vals, final int endIndex) { final int maxElementIndex = MathUtils.maxElementIndex(vals, endIndex); double approxSum = vals[maxElementIndex]; for (int i = 0; i < endIndex; i++) { if (i == maxElementIndex || vals[i] == Double.NEGATIVE_INFINITY) continue; final double diff = approxSum - vals[i]; if (diff < JacobianLogTable.MAX_TOLERANCE) { // See notes from the 2-inout implementation below approxSum += JacobianLogTable.get(diff); } } return approxSum; } public static double approximateLog10SumLog10(final double a, final double b, final double c) { return approximateLog10SumLog10(a, approximateLog10SumLog10(b, c)); } public static double approximateLog10SumLog10(double small, double big) { // make sure small is really the smaller value if (small > big) { final double t = big; big = small; small = t; } if (small == Double.NEGATIVE_INFINITY || big == Double.NEGATIVE_INFINITY) return big; final double diff = big - small; if (diff >= JacobianLogTable.MAX_TOLERANCE) return big; // OK, so |y-x| < tol: we use the following identity then: // we need to compute log10(10^x + 10^y) // By Jacobian logarithm identity, this is equal to // max(x,y) + log10(1+10^-abs(x-y)) // we compute the second term as a table lookup with integer quantization // we have pre-stored correction for 0,0.1,0.2,... 10.0 return big + JacobianLogTable.get(diff); } public static double sum(final double[] values) { double s = 0.0; for (double v : values) s += v; return s; } public static long sum(final int[] x) { long total = 0; for (int v : x) total += v; return total; } public static int sum(final byte[] x) { int total = 0; for (byte v : x) total += (int) v; return total; } public static double percentage(int x, int base) { return (base > 0 ? ((double) x / (double) base) * 100.0 : 0); } public static double ratio(final int num, final int denom) { if (denom > 0) { return ((double) num) / denom; } else { if (num == 0 && denom == 0) { return 0.0; } else { throw new ReviewedGATKException(String .format("The denominator of a ratio cannot be zero or less than zero: %d/%d", num, denom)); } } } public static double ratio(final long num, final long denom) { if (denom > 0L) { return ((double) num) / denom; } else { if (num == 0L && denom == 0L) { return 0.0; } else { throw new ReviewedGATKException(String .format("The denominator of a ratio cannot be zero or less than zero: %d/%d", num, denom)); } } } /** * Converts a real space array of numbers (typically probabilities) into a log10 array * * @param prRealSpace * @return */ public static double[] toLog10(final double[] prRealSpace) { double[] log10s = new double[prRealSpace.length]; for (int i = 0; i < prRealSpace.length; i++) { log10s[i] = Math.log10(prRealSpace[i]); } return log10s; } public static double log10sumLog10(final double[] log10p, final int start) { return log10sumLog10(log10p, start, log10p.length); } public static double log10sumLog10(final double[] log10p, final int start, final int finish) { if (start >= finish) return Double.NEGATIVE_INFINITY; final int maxElementIndex = MathUtils.maxElementIndex(log10p, start, finish); final double maxValue = log10p[maxElementIndex]; if (maxValue == Double.NEGATIVE_INFINITY) return maxValue; double sum = 1.0; for (int i = start; i < finish; i++) { double curVal = log10p[i]; double scaled_val = curVal - maxValue; if (i == maxElementIndex || curVal == Double.NEGATIVE_INFINITY) { continue; } else { sum += Math.pow(10.0, scaled_val); } } if (Double.isNaN(sum) || sum == Double.POSITIVE_INFINITY) { throw new IllegalArgumentException("log10p: Values must be non-infinite and non-NAN"); } return maxValue + (sum != 1.0 ? Math.log10(sum) : 0.0); } public static double sumLog10(final double[] log10values) { return Math.pow(10.0, log10sumLog10(log10values)); } public static double log10sumLog10(final double[] log10values) { return log10sumLog10(log10values, 0); } public static boolean wellFormedDouble(final double val) { return !Double.isInfinite(val) && !Double.isNaN(val); } public static double bound(final double value, final double minBoundary, final double maxBoundary) { return Math.max(Math.min(value, maxBoundary), minBoundary); } public static boolean isBounded(final double val, final double lower, final double upper) { return val >= lower && val <= upper; } public static boolean isPositive(final double val) { return !isNegativeOrZero(val); } public static boolean isPositiveOrZero(final double val) { return isBounded(val, 0.0, Double.POSITIVE_INFINITY); } public static boolean isNegativeOrZero(final double val) { return isBounded(val, Double.NEGATIVE_INFINITY, 0.0); } public static boolean isNegative(final double val) { return !isPositiveOrZero(val); } /** * Compares double values for equality (within 1e-6), or inequality. * * @param a the first double value * @param b the second double value * @return -1 if a is greater than b, 0 if a is equal to be within 1e-6, 1 if b is greater than a. */ public static byte compareDoubles(final double a, final double b) { return compareDoubles(a, b, 1e-6); } /** * Compares double values for equality (within epsilon), or inequality. * * @param a the first double value * @param b the second double value * @param epsilon the precision within which two double values will be considered equal * @return -1 if a is greater than b, 0 if a is equal to be within epsilon, 1 if b is greater than a. */ public static byte compareDoubles(final double a, final double b, final double epsilon) { if (Math.abs(a - b) < epsilon) { return 0; } if (a > b) { return -1; } return 1; } /** * Calculate f(x) = Normal(x | mu = mean, sigma = sd) * @param mean the desired mean of the Normal distribution * @param sd the desired standard deviation of the Normal distribution * @param x the value to evaluate * @return a well-formed double */ public static double normalDistribution(final double mean, final double sd, final double x) { if (sd < 0) throw new IllegalArgumentException("sd: Standard deviation of normal must be >0"); if (!wellFormedDouble(mean) || !wellFormedDouble(sd) || !wellFormedDouble(x)) throw new IllegalArgumentException( "mean, sd, or, x : Normal parameters must be well formatted (non-INF, non-NAN)"); double a = 1.0 / (sd * Math.sqrt(2.0 * Math.PI)); double b = Math.exp(-1.0 * (Math.pow(x - mean, 2.0) / (2.0 * sd * sd))); return a * b; } /** * Calculate f(x) = log10 ( Normal(x | mu = mean, sigma = sd) ) * @param mean the desired mean of the Normal distribution * @param sd the desired standard deviation of the Normal distribution * @param x the value to evaluate * @return a well-formed double */ public static double normalDistributionLog10(final double mean, final double sd, final double x) { if (sd < 0) throw new IllegalArgumentException("sd: Standard deviation of normal must be >0"); if (!wellFormedDouble(mean) || !wellFormedDouble(sd) || !wellFormedDouble(x)) throw new IllegalArgumentException( "mean, sd, or, x : Normal parameters must be well formatted (non-INF, non-NAN)"); final double a = -1.0 * Math.log10(sd * SQUARE_ROOT_OF_TWO_TIMES_PI); final double b = -1.0 * (square(x - mean) / (2.0 * square(sd))) / NATURAL_LOG_OF_TEN; return a + b; } /** * Calculate f(x) = x^2 * @param x the value to square * @return x * x */ public static double square(final double x) { return x * x; } /** * Calculates the log10 of the binomial coefficient. Designed to prevent * overflows even with very large numbers. * * @param n total number of trials * @param k number of successes * @return the log10 of the binomial coefficient */ public static double binomialCoefficient(final int n, final int k) { return Math.pow(10, log10BinomialCoefficient(n, k)); } /** * @see #binomialCoefficient(int, int) with log10 applied to result */ public static double log10BinomialCoefficient(final int n, final int k) { if (n < 0) { throw new IllegalArgumentException("n: Must have non-negative number of trials"); } if (k > n || k < 0) { throw new IllegalArgumentException( "k: Must have non-negative number of successes, and no more successes than number of trials"); } return log10Factorial(n) - log10Factorial(k) - log10Factorial(n - k); } /** * Computes a binomial probability. This is computed using the formula * <p/> * B(k; n; p) = [ n! / ( k! (n - k)! ) ] (p^k)( (1-p)^k ) * <p/> * where n is the number of trials, k is the number of successes, and p is the probability of success * * @param n number of Bernoulli trials * @param k number of successes * @param p probability of success * @return the binomial probability of the specified configuration. Computes values down to about 1e-237. */ public static double binomialProbability(final int n, final int k, final double p) { return Math.pow(10, log10BinomialProbability(n, k, Math.log10(p))); } /** * @see #binomialProbability(int, int, double) with log10 applied to result */ public static double log10BinomialProbability(final int n, final int k, final double log10p) { if (log10p > 1e-18) throw new IllegalArgumentException("log10p: Log-probability must be 0 or less"); double log10OneMinusP = Math.log10(1 - Math.pow(10, log10p)); return log10BinomialCoefficient(n, k) + log10p * k + log10OneMinusP * (n - k); } /** * @see #binomialProbability(int, int, double) with p=0.5 */ public static double binomialProbability(final int n, final int k) { return Math.pow(10, log10BinomialProbability(n, k)); } /** * @see #binomialProbability(int, int, double) with p=0.5 and log10 applied to result */ public static double log10BinomialProbability(final int n, final int k) { return log10BinomialCoefficient(n, k) + (n * FAIR_BINOMIAL_PROB_LOG10_0_5); } /** A memoization container for {@link #binomialCumulativeProbability(int, int, int)}. Synchronized to accomodate multithreading. */ private static final Map<Long, Double> BINOMIAL_CUMULATIVE_PROBABILITY_MEMOIZATION_CACHE = Collections .synchronizedMap(new LRUCache<Long, Double>(10_000)); /** * Primitive integer-triplet bijection into long. Returns null when the bijection function fails (in lieu of an exception), which will * happen when: any value is negative or larger than a short. This method is optimized for speed; it is not intended to serve as a * utility function. */ static Long fastGenerateUniqueHashFromThreeIntegers(final int one, final int two, final int three) { if (one < 0 || two < 0 || three < 0 || Short.MAX_VALUE < one || Short.MAX_VALUE < two || Short.MAX_VALUE < three) { return null; } else { long result = 0; result += (short) one; result <<= 16; result += (short) two; result <<= 16; result += (short) three; return result; } } /** * Performs the cumulative sum of binomial probabilities, where the probability calculation is done in log space. * Assumes that the probability of a successful hit is fair (i.e. 0.5). * * This pure function is memoized because of its expensive BigDecimal calculations. * * @param n number of attempts for the number of hits * @param k_start start (inclusive) of the cumulant sum (over hits) * @param k_end end (inclusive) of the cumulant sum (over hits) * @return - returns the cumulative probability */ public static double binomialCumulativeProbability(final int n, final int k_start, final int k_end) { if (k_end > n) throw new IllegalArgumentException( String.format("Value for k_end (%d) is greater than n (%d)", k_end, n)); // Fetch cached value, if applicable. final Long memoizationKey = fastGenerateUniqueHashFromThreeIntegers(n, k_start, k_end); final Double memoizationCacheResult; if (memoizationKey != null) { memoizationCacheResult = BINOMIAL_CUMULATIVE_PROBABILITY_MEMOIZATION_CACHE.get(memoizationKey); } else { memoizationCacheResult = null; } final double result; if (memoizationCacheResult != null) { result = memoizationCacheResult; } else { double cumProb = 0.0; double prevProb; BigDecimal probCache = BigDecimal.ZERO; for (int hits = k_start; hits <= k_end; hits++) { prevProb = cumProb; final double probability = binomialProbability(n, hits); cumProb += probability; if (probability > 0 && cumProb - prevProb < probability / 2) { // loss of precision probCache = probCache.add(new BigDecimal(prevProb)); cumProb = 0.0; hits--; // repeat loop // prevProb changes at start of loop } } result = probCache.add(new BigDecimal(cumProb)).doubleValue(); if (memoizationKey != null) { BINOMIAL_CUMULATIVE_PROBABILITY_MEMOIZATION_CACHE.put(memoizationKey, result); } } return result; } private static final double LOG1MEXP_THRESHOLD = Math.log(0.5); private static final double LN_10 = Math.log(10); /** * Calculates {@code log(1-exp(a))} without loosing precision. * * <p> * This is based on the approach described in: * * </p> * <p> * Maechler M, Accurately Computing log(1-exp(-|a|)) Assessed by the Rmpfr package, 2012 <br/> * <a ref="http://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf">Online document</a>. * * </p> * * @param a the input exponent. * @return {@link Double#NaN NaN} if {@code a > 0}, otherwise the corresponding value. */ public static double log1mexp(final double a) { if (a > 0) return Double.NaN; if (a == 0) return Double.NEGATIVE_INFINITY; return (a < LOG1MEXP_THRESHOLD) ? Math.log1p(-Math.exp(a)) : Math.log(-Math.expm1(a)); } /** * Calculates {@code log10(1-10^a)} without loosing precision. * * <p> * This is based on the approach described in: * * </p> * <p> * Maechler M, Accurately Computing log(1-exp(-|a|)) Assessed by the Rmpfr package, 2012 <br/> * <a ref="http://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf">Online document</a>. * </p> * * @param a the input exponent. * @return {@link Double#NaN NaN} if {@code a > 0}, otherwise the corresponding value. */ public static double log10OneMinusPow10(final double a) { if (a > 0) return Double.NaN; if (a == 0) return Double.NEGATIVE_INFINITY; final double b = a * LN_10; return log1mexp(b) / LN_10; } /** * Calculates the log10 of the multinomial coefficient. Designed to prevent * overflows even with very large numbers. * * @param n total number of trials * @param k array of any size with the number of successes for each grouping (k1, k2, k3, ..., km) * @return {@link Double#NaN NaN} if {@code a > 0}, otherwise the corresponding value. */ public static double log10MultinomialCoefficient(final int n, final int[] k) { if (n < 0) throw new IllegalArgumentException("n: Must have non-negative number of trials"); double denominator = 0.0; int sum = 0; for (int x : k) { if (x < 0) throw new IllegalArgumentException("x element of k: Must have non-negative observations of group"); if (x > n) throw new IllegalArgumentException("x element of k, n: Group observations must be bounded by k"); denominator += log10Factorial(x); sum += x; } if (sum != n) throw new IllegalArgumentException( "k and n: Sum of observations in multinomial must sum to total number of trials"); return log10Factorial(n) - denominator; } /** * Computes the log10 of the multinomial distribution probability given a vector * of log10 probabilities. Designed to prevent overflows even with very large numbers. * * @param n number of trials * @param k array of number of successes for each possibility * @param log10p array of log10 probabilities * @return */ public static double log10MultinomialProbability(final int n, final int[] k, final double[] log10p) { if (log10p.length != k.length) throw new IllegalArgumentException( "p and k: Array of log10 probabilities must have the same size as the array of number of sucesses: " + log10p.length + ", " + k.length); double log10Prod = 0.0; for (int i = 0; i < log10p.length; i++) { if (log10p[i] > 1e-18) throw new IllegalArgumentException("log10p: Log-probability must be <= 0"); log10Prod += log10p[i] * k[i]; } return log10MultinomialCoefficient(n, k) + log10Prod; } /** * Computes a multinomial coefficient efficiently avoiding overflow even for large numbers. * This is computed using the formula: * <p/> * M(x1,x2,...,xk; n) = [ n! / (x1! x2! ... xk!) ] * <p/> * where xi represents the number of times outcome i was observed, n is the number of total observations. * In this implementation, the value of n is inferred as the sum over i of xi. * * @param k an int[] of counts, where each element represents the number of times a certain outcome was observed * @return the multinomial of the specified configuration. */ public static double multinomialCoefficient(final int[] k) { int n = 0; for (int xi : k) { n += xi; } return Math.pow(10, log10MultinomialCoefficient(n, k)); } /** * Computes a multinomial probability efficiently avoiding overflow even for large numbers. * This is computed using the formula: * <p/> * M(x1,x2,...,xk; n; p1,p2,...,pk) = [ n! / (x1! x2! ... xk!) ] (p1^x1)(p2^x2)(...)(pk^xk) * <p/> * where xi represents the number of times outcome i was observed, n is the number of total observations, and * pi represents the probability of the i-th outcome to occur. In this implementation, the value of n is * inferred as the sum over i of xi. * * @param k an int[] of counts, where each element represents the number of times a certain outcome was observed * @param p a double[] of probabilities, where each element represents the probability a given outcome can occur * @return the multinomial probability of the specified configuration. */ public static double multinomialProbability(final int[] k, final double[] p) { if (p.length != k.length) throw new IllegalArgumentException( "p and k: Array of log10 probabilities must have the same size as the array of number of sucesses: " + p.length + ", " + k.length); int n = 0; double[] log10P = new double[p.length]; for (int i = 0; i < p.length; i++) { log10P[i] = Math.log10(p[i]); n += k[i]; } return Math.pow(10, log10MultinomialProbability(n, k, log10P)); } /** * calculate the Root Mean Square of an array of integers * * @param x an byte[] of numbers * @return the RMS of the specified numbers. */ public static double rms(final byte[] x) { if (x.length == 0) return 0.0; double rms = 0.0; for (int i : x) rms += i * i; rms /= x.length; return Math.sqrt(rms); } /** * calculate the Root Mean Square of an array of integers * * @param x an int[] of numbers * @return the RMS of the specified numbers. */ public static double rms(final int[] x) { if (x.length == 0) return 0.0; double rms = 0.0; for (int i : x) rms += i * i; rms /= x.length; return Math.sqrt(rms); } /** * calculate the Root Mean Square of an array of doubles * * @param x a double[] of numbers * @return the RMS of the specified numbers. */ public static double rms(final Double[] x) { if (x.length == 0) return 0.0; double rms = 0.0; for (Double i : x) rms += i * i; rms /= x.length; return Math.sqrt(rms); } public static double rms(final Collection<Integer> l) { if (l.size() == 0) return 0.0; double rms = 0.0; for (int i : l) rms += i * i; rms /= l.size(); return Math.sqrt(rms); } public static double distanceSquared(final double[] x, final double[] y) { double dist = 0.0; for (int iii = 0; iii < x.length; iii++) { dist += (x[iii] - y[iii]) * (x[iii] - y[iii]); } return dist; } public static double round(final double num, final int digits) { double result = num * Math.pow(10.0, (double) digits); result = Math.round(result); result = result / Math.pow(10.0, (double) digits); return result; } /** * normalizes the log10-based array. ASSUMES THAT ALL ARRAY ENTRIES ARE <= 0 (<= 1 IN REAL-SPACE). * * @param array the array to be normalized * @param takeLog10OfOutput if true, the output will be transformed back into log10 units * @return a newly allocated array corresponding the normalized values in array, maybe log10 transformed */ public static double[] normalizeFromLog10(final double[] array, final boolean takeLog10OfOutput) { return normalizeFromLog10(array, takeLog10OfOutput, false); } /** * See #normalizeFromLog10 but with the additional option to use an approximation that keeps the calculation always in log-space * * @param array * @param takeLog10OfOutput * @param keepInLogSpace * * @return */ public static double[] normalizeFromLog10(final double[] array, final boolean takeLog10OfOutput, final boolean keepInLogSpace) { // for precision purposes, we need to add (or really subtract, since they're // all negative) the largest value; also, we need to convert to normal-space. double maxValue = arrayMax(array); // we may decide to just normalize in log space without converting to linear space if (keepInLogSpace) { for (int i = 0; i < array.length; i++) { array[i] -= maxValue; } return array; } // default case: go to linear space double[] normalized = new double[array.length]; for (int i = 0; i < array.length; i++) normalized[i] = Math.pow(10, array[i] - maxValue); // normalize double sum = 0.0; for (int i = 0; i < array.length; i++) sum += normalized[i]; for (int i = 0; i < array.length; i++) { double x = normalized[i] / sum; if (takeLog10OfOutput) { x = Math.log10(x); if (x < LOG10_P_OF_ZERO || Double.isInfinite(x)) x = array[i] - maxValue; } normalized[i] = x; } return normalized; } /** * normalizes the log10-based array. ASSUMES THAT ALL ARRAY ENTRIES ARE <= 0 (<= 1 IN REAL-SPACE). * * @param array the array to be normalized * @return a newly allocated array corresponding the normalized values in array */ public static double[] normalizeFromLog10(final double[] array) { return normalizeFromLog10(array, false); } /** * normalizes the real-space probability array. * * Does not assume anything about the values in the array, beyond that no elements are below 0. It's ok * to have values in the array of > 1, or have the sum go above 0. * * @param array the array to be normalized * @return a newly allocated array corresponding the normalized values in array */ public static double[] normalizeFromRealSpace(final double[] array) { if (array.length == 0) return array; final double sum = sum(array); final double[] normalized = new double[array.length]; if (sum < 0.0) throw new IllegalArgumentException("Values in probability array sum to a negative number " + sum); for (int i = 0; i < array.length; i++) { normalized[i] = array[i] / sum; } return normalized; } public static int maxElementIndex(final double[] array) { return maxElementIndex(array, array.length); } public static int maxElementIndex(final double[] array, final int start, final int endIndex) { if (array == null || array.length == 0) throw new IllegalArgumentException("Array cannot be null!"); if (start > endIndex) { throw new IllegalArgumentException("Start cannot be after end."); } int maxI = start; for (int i = (start + 1); i < endIndex; i++) { if (array[i] > array[maxI]) maxI = i; } return maxI; } public static int maxElementIndex(final double[] array, final int endIndex) { return maxElementIndex(array, 0, endIndex); } public static int maxElementIndex(final int[] array) { return maxElementIndex(array, array.length); } public static int maxElementIndex(final byte[] array) { return maxElementIndex(array, array.length); } public static int maxElementIndex(final int[] array, final int endIndex) { if (array == null || array.length == 0) throw new IllegalArgumentException("Array cannot be null!"); int maxI = 0; for (int i = 1; i < endIndex; i++) { if (array[i] > array[maxI]) maxI = i; } return maxI; } public static int maxElementIndex(final byte[] array, final int endIndex) { if (array == null || array.length == 0) throw new IllegalArgumentException("Array cannot be null!"); int maxI = 0; for (int i = 1; i < endIndex; i++) { if (array[i] > array[maxI]) maxI = i; } return maxI; } public static int arrayMax(final int[] array) { return array[maxElementIndex(array)]; } public static double arrayMax(final double[] array) { return array[maxElementIndex(array)]; } public static double arrayMax(final double[] array, final int endIndex) { return array[maxElementIndex(array, endIndex)]; } public static double arrayMin(final double[] array) { return array[minElementIndex(array)]; } public static int arrayMin(final int[] array) { return array[minElementIndex(array)]; } public static byte arrayMin(final byte[] array) { return array[minElementIndex(array)]; } /** * Compute the min element of a List<Integer> * @param array a non-empty list of integer * @return the min */ public static int arrayMin(final List<Integer> array) { if (array == null || array.isEmpty()) throw new IllegalArgumentException("Array must be non-null and non-empty"); int min = array.get(0); for (final int i : array) if (i < min) min = i; return min; } /** * Compute the median element of the list of integers * @param array a list of integers * @return the median element */ public static <T extends Comparable<? super T>> T median(final List<T> array) { /* TODO -- from Valentin the current implementation is not the usual median when the input is of even length. More concretely it returns the ith element of the list where i = floor(input.size() / 2). But actually that is not the "usual" definition of a median, as it is supposed to return the average of the two middle values when the sample length is an even number (i.e. median(1,2,3,4,5,6) == 3.5). [Sources: R and wikipedia] My suggestion for a solution is then: unify median and medianDoubles to public static <T extends Number> T median(Collection<T>) check on null elements and throw an exception if there are any or perhaps return a null; documented in the javadoc. relocate, rename and refactor MathUtils.median(X) to Utils.ithElement(X,X.size()/2) In addition, the current median implementation sorts the whole input list witch is O(n log n). However find out the ith element (thus calculate the median) can be done in O(n) */ if (array == null) throw new IllegalArgumentException("Array must be non-null"); final int size = array.size(); if (size == 0) throw new IllegalArgumentException("Array cannot have size 0"); else if (size == 1) return array.get(0); else { final ArrayList<T> sorted = new ArrayList<>(array); Collections.sort(sorted); return sorted.get(size / 2); } } public static int minElementIndex(final double[] array) { if (array == null || array.length == 0) throw new IllegalArgumentException("Array cannot be null!"); int minI = 0; for (int i = 1; i < array.length; i++) { if (array[i] < array[minI]) minI = i; } return minI; } public static int minElementIndex(final byte[] array) { if (array == null || array.length == 0) throw new IllegalArgumentException("Array cannot be null!"); int minI = 0; for (int i = 1; i < array.length; i++) { if (array[i] < array[minI]) minI = i; } return minI; } public static int minElementIndex(final int[] array) { if (array == null || array.length == 0) throw new IllegalArgumentException("Array cannot be null!"); int minI = 0; for (int i = 1; i < array.length; i++) { if (array[i] < array[minI]) minI = i; } return minI; } public static int arrayMaxInt(final List<Integer> array) { if (array == null) throw new IllegalArgumentException("Array cannot be null!"); if (array.size() == 0) throw new IllegalArgumentException("Array size cannot be 0!"); int m = array.get(0); for (int e : array) m = Math.max(m, e); return m; } public static int sum(final List<Integer> list) { int sum = 0; for (Integer i : list) { sum += i; } return sum; } public static double average(final List<Long> vals, final int maxI) { long sum = 0L; int i = 0; for (long x : vals) { if (i > maxI) break; sum += x; i++; } return (1.0 * sum) / i; } public static double average(final List<Long> vals) { return average(vals, vals.size()); } public static int countOccurrences(final char c, final String s) { int count = 0; for (int i = 0; i < s.length(); i++) { count += s.charAt(i) == c ? 1 : 0; } return count; } public static <T> int countOccurrences(T x, List<T> l) { int count = 0; for (T y : l) { if (x.equals(y)) count++; } return count; } public static int countOccurrences(byte element, byte[] array) { int count = 0; for (byte y : array) { if (element == y) count++; } return count; } public static int countOccurrences(final boolean element, final boolean[] array) { int count = 0; for (final boolean b : array) { if (element == b) count++; } return count; } /** * Returns n random indices drawn with replacement from the range 0..(k-1) * * @param n the total number of indices sampled from * @param k the number of random indices to draw (with replacement) * @return a list of k random indices ranging from 0 to (n-1) with possible duplicates */ static public ArrayList<Integer> sampleIndicesWithReplacement(final int n, final int k) { ArrayList<Integer> chosen_balls = new ArrayList<Integer>(k); for (int i = 0; i < k; i++) { //Integer chosen_ball = balls[rand.nextInt(k)]; chosen_balls.add(RandomGenerator.getRandomGenerator().nextInt(n)); //balls.remove(chosen_ball); } return chosen_balls; } /** * Returns n random indices drawn without replacement from the range 0..(k-1) * * @param n the total number of indices sampled from * @param k the number of random indices to draw (without replacement) * @return a list of k random indices ranging from 0 to (n-1) without duplicates */ static public ArrayList<Integer> sampleIndicesWithoutReplacement(final int n, final int k) { ArrayList<Integer> chosen_balls = new ArrayList<Integer>(k); for (int i = 0; i < n; i++) { chosen_balls.add(i); } Collections.shuffle(chosen_balls, RandomGenerator.getRandomGenerator()); //return (ArrayList<Integer>) chosen_balls.subList(0, k); return new ArrayList<Integer>(chosen_balls.subList(0, k)); } /** * Given a list of indices into a list, return those elements of the list with the possibility of drawing list elements multiple times * * @param indices the list of indices for elements to extract * @param list the list from which the elements should be extracted * @param <T> the template type of the ArrayList * @return a new ArrayList consisting of the elements at the specified indices */ static public <T> ArrayList<T> sliceListByIndices(final List<Integer> indices, final List<T> list) { ArrayList<T> subset = new ArrayList<T>(); for (int i : indices) { subset.add(list.get(i)); } return subset; } /** * Given two log-probability vectors, compute log of vector product of them: * in Matlab notation, return log10(10.*x'*10.^y) * @param x vector 1 * @param y vector 2 * @return a double representing log (dotProd(10.^x,10.^y) */ public static double logDotProduct(final double[] x, final double[] y) { if (x.length != y.length) throw new ReviewedGATKException("BUG: Vectors of different lengths"); double tmpVec[] = new double[x.length]; for (int k = 0; k < tmpVec.length; k++) { tmpVec[k] = x[k] + y[k]; } return log10sumLog10(tmpVec); } /** * Check that the log10 prob vector vector is well formed * * @param vector * @param expectedSize * @param shouldSumToOne * * @return true if vector is well-formed, false otherwise */ public static boolean goodLog10ProbVector(final double[] vector, final int expectedSize, final boolean shouldSumToOne) { if (vector.length != expectedSize) return false; for (final double pr : vector) { if (!goodLog10Probability(pr)) return false; } if (shouldSumToOne && compareDoubles(sumLog10(vector), 1.0, 1e-4) != 0) return false; return true; // everything is good } /** * Checks that the result is a well-formed log10 probability * * @param result a supposedly well-formed log10 probability value. By default allows * -Infinity values, as log10(0.0) == -Infinity. * @return true if result is really well formed */ public static boolean goodLog10Probability(final double result) { return goodLog10Probability(result, true); } /** * Checks that the result is a well-formed log10 probability * * @param result a supposedly well-formed log10 probability value * @param allowNegativeInfinity should we consider a -Infinity value ok? * @return true if result is really well formed */ public static boolean goodLog10Probability(final double result, final boolean allowNegativeInfinity) { return result <= 0.0 && result != Double.POSITIVE_INFINITY && (allowNegativeInfinity || result != Double.NEGATIVE_INFINITY) && !Double.isNaN(result); } /** * Checks that the result is a well-formed probability * * @param result a supposedly well-formed probability value * @return true if result is really well formed */ public static boolean goodProbability(final double result) { return result >= 0.0 && result <= 1.0 && !Double.isInfinite(result) && !Double.isNaN(result); } /** * A utility class that computes on the fly average and standard deviation for a stream of numbers. * The number of observations does not have to be known in advance, and can be also very big (so that * it could overflow any naive summation-based scheme or cause loss of precision). * Instead, adding a new number <code>observed</code> * to a sample with <code>add(observed)</code> immediately updates the instance of this object so that * it contains correct mean and standard deviation for all the numbers seen so far. Source: Knuth, vol.2 * (see also e.g. http://www.johndcook.com/standard_deviation.html for online reference). */ public static class RunningAverage { private double mean = 0.0; private double s = 0.0; private long obs_count = 0; public void add(double obs) { obs_count++; double oldMean = mean; mean += (obs - mean) / obs_count; // update mean s += (obs - oldMean) * (obs - mean); } public void addAll(Collection<Number> col) { for (Number o : col) { add(o.doubleValue()); } } public double mean() { return mean; } public double stddev() { return Math.sqrt(s / (obs_count - 1)); } public double var() { return s / (obs_count - 1); } public long observationCount() { return obs_count; } public RunningAverage clone() { RunningAverage ra = new RunningAverage(); ra.mean = this.mean; ra.s = this.s; ra.obs_count = this.obs_count; return ra; } public void merge(RunningAverage other) { if (this.obs_count > 0 || other.obs_count > 0) { // if we have any observations at all this.mean = (this.mean * this.obs_count + other.mean * other.obs_count) / (this.obs_count + other.obs_count); this.s += other.s; } this.obs_count += other.obs_count; } } // // useful common utility routines // static public double max(double x0, double x1, double x2) { double a = Math.max(x0, x1); return Math.max(a, x2); } /** * Converts LN to LOG10 * * @param ln log(x) * @return log10(x) */ public static double lnToLog10(final double ln) { return ln * Math.log10(Math.E); } /** * Constants to simplify the log gamma function calculation. */ private static final double zero = 0.0, one = 1.0, half = .5, a0 = 7.72156649015328655494e-02, a1 = 3.22467033424113591611e-01, a2 = 6.73523010531292681824e-02, a3 = 2.05808084325167332806e-02, a4 = 7.38555086081402883957e-03, a5 = 2.89051383673415629091e-03, a6 = 1.19270763183362067845e-03, a7 = 5.10069792153511336608e-04, a8 = 2.20862790713908385557e-04, a9 = 1.08011567247583939954e-04, a10 = 2.52144565451257326939e-05, a11 = 4.48640949618915160150e-05, tc = 1.46163214496836224576e+00, tf = -1.21486290535849611461e-01, tt = -3.63867699703950536541e-18, t0 = 4.83836122723810047042e-01, t1 = -1.47587722994593911752e-01, t2 = 6.46249402391333854778e-02, t3 = -3.27885410759859649565e-02, t4 = 1.79706750811820387126e-02, t5 = -1.03142241298341437450e-02, t6 = 6.10053870246291332635e-03, t7 = -3.68452016781138256760e-03, t8 = 2.25964780900612472250e-03, t9 = -1.40346469989232843813e-03, t10 = 8.81081882437654011382e-04, t11 = -5.38595305356740546715e-04, t12 = 3.15632070903625950361e-04, t13 = -3.12754168375120860518e-04, t14 = 3.35529192635519073543e-04, u0 = -7.72156649015328655494e-02, u1 = 6.32827064025093366517e-01, u2 = 1.45492250137234768737e+00, u3 = 9.77717527963372745603e-01, u4 = 2.28963728064692451092e-01, u5 = 1.33810918536787660377e-02, v1 = 2.45597793713041134822e+00, v2 = 2.12848976379893395361e+00, v3 = 7.69285150456672783825e-01, v4 = 1.04222645593369134254e-01, v5 = 3.21709242282423911810e-03, s0 = -7.72156649015328655494e-02, s1 = 2.14982415960608852501e-01, s2 = 3.25778796408930981787e-01, s3 = 1.46350472652464452805e-01, s4 = 2.66422703033638609560e-02, s5 = 1.84028451407337715652e-03, s6 = 3.19475326584100867617e-05, r1 = 1.39200533467621045958e+00, r2 = 7.21935547567138069525e-01, r3 = 1.71933865632803078993e-01, r4 = 1.86459191715652901344e-02, r5 = 7.77942496381893596434e-04, r6 = 7.32668430744625636189e-06, w0 = 4.18938533204672725052e-01, w1 = 8.33333333333329678849e-02, w2 = -2.77777777728775536470e-03, w3 = 7.93650558643019558500e-04, w4 = -5.95187557450339963135e-04, w5 = 8.36339918996282139126e-04, w6 = -1.63092934096575273989e-03; /** * Efficient rounding functions to simplify the log gamma function calculation * double to long with 32 bit shift */ private static final int HI(final double x) { return (int) (Double.doubleToLongBits(x) >> 32); } /** * Efficient rounding functions to simplify the log gamma function calculation * double to long without shift */ private static final int LO(final double x) { return (int) Double.doubleToLongBits(x); } /** * Most efficent implementation of the lnGamma (FDLIBM) * Use via the log10Gamma wrapper method. */ private static double lnGamma(final double x) { double t, y, z, p, p1, p2, p3, q, r, w; int i; int hx = HI(x); int lx = LO(x); /* purge off +-inf, NaN, +-0, and negative arguments */ int ix = hx & 0x7fffffff; if (ix >= 0x7ff00000) return Double.POSITIVE_INFINITY; if ((ix | lx) == 0 || hx < 0) return Double.NaN; if (ix < 0x3b900000) { /* |x|<2**-70, return -log(|x|) */ return -Math.log(x); } /* purge off 1 and 2 */ if ((((ix - 0x3ff00000) | lx) == 0) || (((ix - 0x40000000) | lx) == 0)) r = 0; /* for x < 2.0 */ else if (ix < 0x40000000) { if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ r = -Math.log(x); if (ix >= 0x3FE76944) { y = one - x; i = 0; } else if (ix >= 0x3FCDA661) { y = x - (tc - one); i = 1; } else { y = x; i = 2; } } else { r = zero; if (ix >= 0x3FFBB4C3) { y = 2.0 - x; i = 0; } /* [1.7316,2] */ else if (ix >= 0x3FF3B4C4) { y = x - tc; i = 1; } /* [1.23,1.73] */ else { y = x - one; i = 2; } } switch (i) { case 0: z = y * y; p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10)))); p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11))))); p = y * p1 + p2; r += (p - 0.5 * y); break; case 1: z = y * y; w = z * y; p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */ p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13))); p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14))); p = z * p1 - (tt - w * (p2 + y * p3)); r += (tf + p); break; case 2: p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5))))); p2 = one + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5)))); r += (-0.5 * y + p1 / p2); } } else if (ix < 0x40200000) { /* x < 8.0 */ i = (int) x; t = zero; y = x - (double) i; p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6)))))); q = one + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6))))); r = half * y + p / q; z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ switch (i) { case 7: z *= (y + 6.0); /* FALLTHRU */ case 6: z *= (y + 5.0); /* FALLTHRU */ case 5: z *= (y + 4.0); /* FALLTHRU */ case 4: z *= (y + 3.0); /* FALLTHRU */ case 3: z *= (y + 2.0); /* FALLTHRU */ r += Math.log(z); break; } /* 8.0 <= x < 2**58 */ } else if (ix < 0x43900000) { t = Math.log(x); z = one / x; y = z * z; w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6))))); r = (x - half) * (t - one) + w; } else /* 2**58 <= x <= inf */ r = x * (Math.log(x) - one); return r; } /** * Calculates the log10 of the gamma function for x using the efficient FDLIBM * implementation to avoid overflows and guarantees high accuracy even for large * numbers. * * @param x the x parameter * @return the log10 of the gamma function at x. */ public static double log10Gamma(final double x) { return lnToLog10(lnGamma(x)); } public static double factorial(final int x) { // avoid rounding errors caused by fact that 10^log(x) might be slightly lower than x and flooring may produce 1 less than real value return (double) Math.round(Math.pow(10, log10Factorial(x))); } public static double log10Factorial(final int x) { if (x >= Log10FactorialCache.size() || x < 0) return log10Gamma(x + 1); else return Log10FactorialCache.get(x); } /** * Wrapper class so that the log10Factorial array is only calculated if it's used */ private static class Log10FactorialCache { /** * The size of the precomputed cache. Must be a positive number! */ private static final int CACHE_SIZE = 10_000; public static int size() { return CACHE_SIZE; } public static double get(final int n) { if (cache == null) initialize(); return cache[n]; } private static synchronized void initialize() { if (cache == null) { Log10Cache.ensureCacheContains(CACHE_SIZE); cache = new double[CACHE_SIZE]; cache[0] = 0.0; for (int k = 1; k < cache.length; k++) cache[k] = cache[k - 1] + Log10Cache.get(k); } } private static double[] cache = null; } /** * Adds two arrays together and returns a new array with the sum. * * @param a one array * @param b another array * @return a new array with the sum of a and b */ public static int[] addArrays(final int[] a, final int[] b) { int[] c = new int[a.length]; for (int i = 0; i < a.length; i++) c[i] = a[i] + b[i]; return c; } /** Same routine, unboxed types for efficiency * * @param x First vector * @param y Second vector * @return Vector of same length as x and y so that z[k] = x[k]+y[k] */ public static double[] vectorSum(final double[] x, final double[] y) { if (x.length != y.length) throw new ReviewedGATKException("BUG: Lengths of x and y must be the same"); double[] result = new double[x.length]; for (int k = 0; k < x.length; k++) result[k] = x[k] + y[k]; return result; } /** Compute Z=X-Y for two numeric vectors X and Y * * @param x First vector * @param y Second vector * @return Vector of same length as x and y so that z[k] = x[k]-y[k] */ public static int[] vectorDiff(final int[] x, final int[] y) { if (x.length != y.length) throw new ReviewedGATKException("BUG: Lengths of x and y must be the same"); int[] result = new int[x.length]; for (int k = 0; k < x.length; k++) result[k] = x[k] - y[k]; return result; } /** * Returns a series of integer values between start and stop, inclusive, * expontentially distributed between the two. That is, if there are * ten values between 0-10 there will be 10 between 10-100. * * WARNING -- BADLY TESTED * @param start * @param stop * @param eps * @return */ public static List<Integer> log10LinearRange(final int start, final int stop, final double eps) { final LinkedList<Integer> values = new LinkedList<>(); final double log10range = Math.log10(stop - start); if (start == 0) values.add(0); double i = 0.0; while (i <= log10range) { final int index = (int) Math.round(Math.pow(10, i)) + start; if (index < stop && (values.peekLast() == null || values.peekLast() != index)) values.add(index); i += eps; } if (values.peekLast() == null || values.peekLast() != stop) values.add(stop); return values; } /** * Compute in a numerical correct way the quantity log10(1-x) * * Uses the approximation log10(1-x) = log10(1/x - 1) + log10(x) to avoid very quick underflow * in 1-x when x is very small * * @param x a positive double value between 0.0 and 1.0 * @return an estimate of log10(1-x) */ public static double log10OneMinusX(final double x) { if (x == 1.0) return Double.NEGATIVE_INFINITY; else if (x == 0.0) return 0.0; else { final double d = Math.log10(1 / x - 1) + Math.log10(x); return Double.isInfinite(d) || d > 0.0 ? 0.0 : d; } } /** * Draw N random elements from list * @param list - the list from which to draw randomly * @param N - the number of elements to draw */ public static <T> List<T> randomSubset(final List<T> list, final int N) { if (list.size() <= N) { return list; } return sliceListByIndices(sampleIndicesWithoutReplacement(list.size(), N), list); } /** * Draw N random elements from list with replacement * @param list - the list from which to draw randomly * @param N - the number of elements to draw */ public static <T> List<T> randomSample(final List<T> list, final int N) { if (list.isEmpty()) { return list; } return sliceListByIndices(sampleIndicesWithReplacement(list.size(), N), list); } /** * Return the likelihood of observing the counts of categories having sampled a population * whose categorial frequencies are distributed according to a Dirichlet distribution * @param dirichletParams - params of the prior dirichlet distribution * @param dirichletSum - the sum of those parameters * @param counts - the counts of observation in each category * @param countSum - the sum of counts (number of trials) * @return - associated likelihood */ public static double dirichletMultinomial(final double[] dirichletParams, final double dirichletSum, final int[] counts, final int countSum) { if (dirichletParams.length != counts.length) { throw new IllegalStateException( "The number of dirichlet parameters must match the number of categories"); } // todo -- lots of lnGammas here. At some point we can safely switch to x * ( ln(x) - 1) double likelihood = log10MultinomialCoefficient(countSum, counts); likelihood += log10Gamma(dirichletSum); likelihood -= log10Gamma(dirichletSum + countSum); for (int idx = 0; idx < counts.length; idx++) { likelihood += log10Gamma(counts[idx] + dirichletParams[idx]); likelihood -= log10Gamma(dirichletParams[idx]); } return likelihood; } public static double dirichletMultinomial(double[] params, int[] counts) { return dirichletMultinomial(params, sum(params), counts, (int) sum(counts)); } public static ExponentialDistribution exponentialDistribution(final double mean) { return new ExponentialDistributionImpl(mean); } }