Java tutorial
/* * LensKit, an open-source toolkit for recommender systems. * Copyright 2014-2017 LensKit contributors (see CONTRIBUTORS.md) * Copyright 2010-2014 Regents of the University of Minnesota * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ package org.lenskit.rerank; import com.google.common.base.Predicate; import com.google.common.collect.Iterables; import it.unimi.dsi.fastutil.longs.LongSet; import org.lenskit.api.ItemRecommender; import org.lenskit.api.Result; import org.lenskit.api.ResultList; import org.lenskit.basic.AbstractItemRecommender; import org.lenskit.results.Results; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import javax.annotation.Nullable; import javax.inject.Inject; import java.util.ArrayList; import java.util.Iterator; import java.util.List; /** * A hybrid item recommender that uses a greedy re-ranking strategy to allow re-ranking of items iteratively. This * general algorithm is commonly employed to efficiently optimize for set properties of a recommendation list such as * inter-item diveristy. * * This algorithm takes a baseline ranking algorithm, gets the top-n recommendations and re-ranks them iteratively. * To select each recommended item, first a scoring algorithm is ran based on the currently selected recommendations * and each candidate item. The item with the highest score is then added to the recommended list. This process repeates * until enough items are recommended. * * @author Daniel Kluver */ public class GreedyRerankingItemRecommender extends AbstractItemRecommender { private static final Logger logger = LoggerFactory.getLogger(GreedyRerankingItemRecommender.class); private final ItemRecommender baseRecommender; private final GreedyRerankStrategy strategy; @Inject public GreedyRerankingItemRecommender(ItemRecommender baseRecommender, GreedyRerankStrategy strategy) { this.baseRecommender = baseRecommender; this.strategy = strategy; } @Override protected ResultList recommendWithDetails(long user, int n, @Nullable LongSet candidateItems, @Nullable LongSet exclude) { List<Result> candidates = baseRecommender.recommendWithDetails(user, -1, candidateItems, exclude); //modifiable copy candidates = new ArrayList<>(candidates); if (n < 0) { n = candidates.size(); } List<Result> results = new ArrayList<>(n); for (int i = 0; i < n; i++) { final Result nextItem = strategy.nextItem(user, n, results, candidates); if (nextItem == null) { break; } else { Iterables.removeIf(candidates, new Predicate<Result>() { @Override public boolean apply(@Nullable Result input) { return input != null && input.getId() == nextItem.getId(); } }); results.add(nextItem); } } return Results.newResultList(results); } }