Java tutorial
/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmsttter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmsttter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics.stat; import static org.jenetics.stat.LongMomentStatistics.toLongMomentStatistics; import java.util.ArrayList; import java.util.List; import java.util.Random; import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics; import org.testng.Assert; import org.testng.annotations.DataProvider; import org.testng.annotations.Test; /** * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmsttter</a> */ public class LongMomentStatisticsTest { private List<Long> numbers(final int size) { final Random random = new Random(123); final List<Long> numbers = new ArrayList<>(size); for (int i = 0; i < size; ++i) { numbers.add((long) (random.nextDouble() * 10_000)); } return numbers; } @Test(dataProvider = "sampleCounts") public void summary(final Integer sampleCounts, final Double epsilon) { final List<Long> numbers = numbers(sampleCounts); final DescriptiveStatistics expected = new DescriptiveStatistics(); numbers.forEach(expected::addValue); final LongMomentStatistics summary = numbers.stream().collect(toLongMomentStatistics(Long::longValue)); Assert.assertEquals(summary.getCount(), numbers.size()); assertEqualsDouble(min(summary.getMin()), expected.getMin(), 0.0); assertEqualsDouble(max(summary.getMax()), expected.getMax(), 0.0); assertEqualsDouble(summary.getSum(), expected.getSum(), epsilon); assertEqualsDouble(summary.getMean(), expected.getMean(), epsilon); assertEqualsDouble(summary.getVariance(), expected.getVariance(), epsilon); assertEqualsDouble(summary.getSkewness(), expected.getSkewness(), epsilon); assertEqualsDouble(summary.getKurtosis(), expected.getKurtosis(), epsilon); } @Test(dataProvider = "parallelSampleCounts") public void parallelSummary(final Integer sampleCounts, final Double epsilon) { final List<Long> numbers = numbers(sampleCounts); final DescriptiveStatistics expected = new DescriptiveStatistics(); numbers.forEach(expected::addValue); final LongMomentStatistics summary = numbers.stream().collect(toLongMomentStatistics(Long::longValue)); Assert.assertEquals(summary.getCount(), numbers.size()); assertEqualsDouble(min(summary.getMin()), expected.getMin(), 0.0); assertEqualsDouble(max(summary.getMax()), expected.getMax(), 0.0); assertEqualsDouble(summary.getSum(), expected.getSum(), epsilon); assertEqualsDouble(summary.getMean(), expected.getMean(), epsilon); assertEqualsDouble(summary.getVariance(), expected.getVariance(), epsilon); assertEqualsDouble(summary.getSkewness(), expected.getSkewness(), epsilon); assertEqualsDouble(summary.getKurtosis(), expected.getKurtosis(), epsilon); } private static double min(final long value) { return value == Long.MAX_VALUE ? Double.NaN : value; } private static double max(final long value) { return value == Long.MIN_VALUE ? Double.NaN : value; } private static void assertEqualsDouble(final double a, final double b, final double e) { if (Double.isNaN(b)) { Assert.assertTrue(Double.isNaN(a), String.format("Expected: Double.NaN \nActual: %s", a)); } else { Assert.assertEquals(a, b, e); } } @DataProvider(name = "sampleCounts") public Object[][] sampleCounts() { return new Object[][] { { 0, 0.0 }, { 1, 0.0 }, { 2, 0.05 }, { 3, 0.05 }, { 100, 0.05 }, { 1_000, 0.0001 }, { 10_000, 0.00001 }, { 100_000, 0.000001 }, { 1_000_000, 0.000001 }, { 2_000_000, 0.0000005 } }; } @DataProvider(name = "parallelSampleCounts") public Object[][] parallelSampleCounts() { return new Object[][] { { 0, 0.0 }, { 1, 0.0 }, { 2, 0.05 }, { 3, 0.05 }, { 100, 0.5 }, { 1_000, 0.003 }, { 10_000, 0.00001 }, { 100_000, 0.000001 }, { 1_000_000, 0.000001 }, { 2_000_000, 0.0000005 } }; } }