org.hibernate.dialect.Dialect.java Source code

Java tutorial

Introduction

Here is the source code for org.hibernate.dialect.Dialect.java

Source

//$Id: Dialect.java 16233 2009-03-31 06:43:12Z gbadner $
/*
 * Hibernate, Relational Persistence for Idiomatic Java
 *
 * Copyright (c) 2008, Red Hat Middleware LLC or third-party contributors as
 * indicated by the @author tags or express copyright attribution
 * statements applied by the authors.  All third-party contributions are
 * distributed under license by Red Hat Middleware LLC.
 *
 * This copyrighted material is made available to anyone wishing to use, modify,
 * copy, or redistribute it subject to the terms and conditions of the GNU
 * Lesser General Public License, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License
 * for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this distribution; if not, write to:
 * Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor
 * Boston, MA  02110-1301  USA
 */
package org.hibernate.dialect;

import java.sql.CallableStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Types;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Properties;
import java.util.Set;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.hibernate.Hibernate;
import org.hibernate.HibernateException;
import org.hibernate.LockMode;
import org.hibernate.MappingException;
import org.hibernate.QueryException;
import org.hibernate.cfg.Environment;
import org.hibernate.dialect.function.CastFunction;
import org.hibernate.dialect.function.SQLFunction;
import org.hibernate.dialect.function.SQLFunctionTemplate;
import org.hibernate.dialect.function.StandardSQLFunction;
import org.hibernate.dialect.lock.LockingStrategy;
import org.hibernate.dialect.lock.SelectLockingStrategy;
import org.hibernate.engine.Mapping;
import org.hibernate.exception.SQLExceptionConverter;
import org.hibernate.exception.SQLStateConverter;
import org.hibernate.exception.ViolatedConstraintNameExtracter;
import org.hibernate.id.IdentityGenerator;
import org.hibernate.id.SequenceGenerator;
import org.hibernate.id.TableHiLoGenerator;
import org.hibernate.mapping.Column;
import org.hibernate.persister.entity.Lockable;
import org.hibernate.sql.ANSICaseFragment;
import org.hibernate.sql.ANSIJoinFragment;
import org.hibernate.sql.CaseFragment;
import org.hibernate.sql.JoinFragment;
import org.hibernate.sql.ForUpdateFragment;
import org.hibernate.type.Type;
import org.hibernate.util.ReflectHelper;
import org.hibernate.util.StringHelper;

/**
 * Represents a dialect of SQL implemented by a particular RDBMS.
 * Subclasses implement Hibernate compatibility with different systems.<br>
 * <br>
 * Subclasses should provide a public default constructor that <tt>register()</tt>
 * a set of type mappings and default Hibernate properties.<br>
 * <br>
 * Subclasses should be immutable.
 *
 * @author Gavin King, David Channon
 */
public abstract class Dialect {

    private static final Log log = LogFactory.getLog(Dialect.class);

    public static final String DEFAULT_BATCH_SIZE = "15";
    public static final String NO_BATCH = "0";

    /**
     * Characters used for quoting SQL identifiers
     */
    public static final String QUOTE = "`\"[";
    public static final String CLOSED_QUOTE = "`\"]";

    // build the map of standard ANSI SQL aggregation functions ~~~~~~~~~~~~~~~

    private static final Map STANDARD_AGGREGATE_FUNCTIONS = new HashMap();
    static {
        STANDARD_AGGREGATE_FUNCTIONS.put("count", new StandardSQLFunction("count") {
            public Type getReturnType(Type columnType, Mapping mapping) {
                return Hibernate.LONG;
            }
        });

        STANDARD_AGGREGATE_FUNCTIONS.put("avg", new StandardSQLFunction("avg") {
            public Type getReturnType(Type columnType, Mapping mapping) throws QueryException {
                int[] sqlTypes;
                try {
                    sqlTypes = columnType.sqlTypes(mapping);
                } catch (MappingException me) {
                    throw new QueryException(me);
                }
                if (sqlTypes.length != 1)
                    throw new QueryException("multi-column type in avg()");
                return Hibernate.DOUBLE;
            }
        });

        STANDARD_AGGREGATE_FUNCTIONS.put("max", new StandardSQLFunction("max"));
        STANDARD_AGGREGATE_FUNCTIONS.put("min", new StandardSQLFunction("min"));
        STANDARD_AGGREGATE_FUNCTIONS.put("sum", new StandardSQLFunction("sum") {
            public Type getReturnType(Type columnType, Mapping mapping) {
                //pre H3.2 behavior: super.getReturnType(ct, m);
                int[] sqlTypes;
                try {
                    sqlTypes = columnType.sqlTypes(mapping);
                } catch (MappingException me) {
                    throw new QueryException(me);
                }
                if (sqlTypes.length != 1)
                    throw new QueryException("multi-column type in sum()");
                int sqlType = sqlTypes[0];

                // First allow the actual type to control the return value. (the actual underlying sqltype could actually be different)
                if (columnType == Hibernate.BIG_INTEGER) {
                    return Hibernate.BIG_INTEGER;
                } else if (columnType == Hibernate.BIG_DECIMAL) {
                    return Hibernate.BIG_DECIMAL;
                } else if (columnType == Hibernate.LONG || columnType == Hibernate.SHORT
                        || columnType == Hibernate.INTEGER) {
                    return Hibernate.LONG;
                } else if (columnType == Hibernate.FLOAT || columnType == Hibernate.DOUBLE) {
                    return Hibernate.DOUBLE;
                }

                // finally use the sqltype if == on Hibernate types did not find a match.
                if (sqlType == Types.NUMERIC) {
                    return columnType; //because numeric can be anything
                } else if (sqlType == Types.FLOAT || sqlType == Types.DOUBLE || sqlType == Types.DECIMAL
                        || sqlType == Types.REAL) {
                    return Hibernate.DOUBLE;
                } else if (sqlType == Types.BIGINT || sqlType == Types.INTEGER || sqlType == Types.SMALLINT
                        || sqlType == Types.TINYINT) {
                    return Hibernate.LONG;
                } else {
                    return columnType;
                }
            }
        });
    }

    private final TypeNames typeNames = new TypeNames();
    private final TypeNames hibernateTypeNames = new TypeNames();

    private final Properties properties = new Properties();
    private final Map sqlFunctions = new HashMap();
    private final Set sqlKeywords = new HashSet();

    // constructors and factory methods ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    protected Dialect() {
        log.info("Using dialect: " + this);
        sqlFunctions.putAll(STANDARD_AGGREGATE_FUNCTIONS);

        // standard sql92 functions (can be overridden by subclasses)
        registerFunction("substring", new SQLFunctionTemplate(Hibernate.STRING, "substring(?1, ?2, ?3)"));
        registerFunction("locate", new SQLFunctionTemplate(Hibernate.INTEGER, "locate(?1, ?2, ?3)"));
        registerFunction("trim", new SQLFunctionTemplate(Hibernate.STRING, "trim(?1 ?2 ?3 ?4)"));
        registerFunction("length", new StandardSQLFunction("length", Hibernate.INTEGER));
        registerFunction("bit_length", new StandardSQLFunction("bit_length", Hibernate.INTEGER));
        registerFunction("coalesce", new StandardSQLFunction("coalesce"));
        registerFunction("nullif", new StandardSQLFunction("nullif"));
        registerFunction("abs", new StandardSQLFunction("abs"));
        registerFunction("mod", new StandardSQLFunction("mod", Hibernate.INTEGER));
        registerFunction("sqrt", new StandardSQLFunction("sqrt", Hibernate.DOUBLE));
        registerFunction("upper", new StandardSQLFunction("upper"));
        registerFunction("lower", new StandardSQLFunction("lower"));
        registerFunction("cast", new CastFunction());
        registerFunction("extract", new SQLFunctionTemplate(Hibernate.INTEGER, "extract(?1 ?2 ?3)"));

        //map second/minute/hour/day/month/year to ANSI extract(), override on subclasses
        registerFunction("second", new SQLFunctionTemplate(Hibernate.INTEGER, "extract(second from ?1)"));
        registerFunction("minute", new SQLFunctionTemplate(Hibernate.INTEGER, "extract(minute from ?1)"));
        registerFunction("hour", new SQLFunctionTemplate(Hibernate.INTEGER, "extract(hour from ?1)"));
        registerFunction("day", new SQLFunctionTemplate(Hibernate.INTEGER, "extract(day from ?1)"));
        registerFunction("month", new SQLFunctionTemplate(Hibernate.INTEGER, "extract(month from ?1)"));
        registerFunction("year", new SQLFunctionTemplate(Hibernate.INTEGER, "extract(year from ?1)"));

        registerFunction("str", new SQLFunctionTemplate(Hibernate.STRING, "cast(?1 as char)"));

        // register hibernate types for default use in scalar sqlquery type auto detection
        registerHibernateType(Types.BIGINT, Hibernate.BIG_INTEGER.getName());
        registerHibernateType(Types.BINARY, Hibernate.BINARY.getName());
        registerHibernateType(Types.BIT, Hibernate.BOOLEAN.getName());
        registerHibernateType(Types.CHAR, Hibernate.CHARACTER.getName());
        registerHibernateType(Types.DATE, Hibernate.DATE.getName());
        registerHibernateType(Types.DOUBLE, Hibernate.DOUBLE.getName());
        registerHibernateType(Types.FLOAT, Hibernate.FLOAT.getName());
        registerHibernateType(Types.INTEGER, Hibernate.INTEGER.getName());
        registerHibernateType(Types.SMALLINT, Hibernate.SHORT.getName());
        registerHibernateType(Types.TINYINT, Hibernate.BYTE.getName());
        registerHibernateType(Types.TIME, Hibernate.TIME.getName());
        registerHibernateType(Types.TIMESTAMP, Hibernate.TIMESTAMP.getName());
        registerHibernateType(Types.VARCHAR, Hibernate.STRING.getName());
        registerHibernateType(Types.VARBINARY, Hibernate.BINARY.getName());
        registerHibernateType(Types.NUMERIC, Hibernate.BIG_DECIMAL.getName());
        registerHibernateType(Types.DECIMAL, Hibernate.BIG_DECIMAL.getName());
        registerHibernateType(Types.BLOB, Hibernate.BLOB.getName());
        registerHibernateType(Types.CLOB, Hibernate.CLOB.getName());
        registerHibernateType(Types.REAL, Hibernate.FLOAT.getName());
    }

    /**
     * Get an instance of the dialect specified by the current <tt>System</tt> properties.
     *
     * @return The specified Dialect
     * @throws HibernateException If no dialect was specified, or if it could not be instantiated.
     */
    public static Dialect getDialect() throws HibernateException {
        String dialectName = Environment.getProperties().getProperty(Environment.DIALECT);
        return instantiateDialect(dialectName);
    }

    /**
     * Get an instance of the dialect specified by the given properties or by
     * the current <tt>System</tt> properties.
     *
     * @param props The properties to use for finding the dialect class to use.
     * @return The specified Dialect
     * @throws HibernateException If no dialect was specified, or if it could not be instantiated.
     */
    public static Dialect getDialect(Properties props) throws HibernateException {
        String dialectName = props.getProperty(Environment.DIALECT);
        if (dialectName == null) {
            return getDialect();
        }
        return instantiateDialect(dialectName);
    }

    private static Dialect instantiateDialect(String dialectName) throws HibernateException {
        if (dialectName == null) {
            throw new HibernateException("The dialect was not set. Set the property hibernate.dialect.");
        }
        try {
            return (Dialect) ReflectHelper.classForName(dialectName).newInstance();
        } catch (ClassNotFoundException cnfe) {
            throw new HibernateException("Dialect class not found: " + dialectName);
        } catch (Exception e) {
            throw new HibernateException("Could not instantiate dialect class", e);
        }
    }

    /**
     * Retrieve a set of default Hibernate properties for this database.
     *
     * @return a set of Hibernate properties
     */
    public final Properties getDefaultProperties() {
        return properties;
    }

    public String toString() {
        return getClass().getName();
    }

    // database type mapping support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Get the name of the database type associated with the given
     * {@link java.sql.Types} typecode.
     *
     * @param code The {@link java.sql.Types} typecode
     * @return the database type name
     * @throws HibernateException If no mapping was specified for that type.
     */
    public String getTypeName(int code) throws HibernateException {
        String result = typeNames.get(code);
        if (result == null) {
            throw new HibernateException("No default type mapping for (java.sql.Types) " + code);
        }
        return result;
    }

    /**
     * Get the name of the database type associated with the given
     * {@link java.sql.Types} typecode with the given storage specification
     * parameters.
     *
     * @param code The {@link java.sql.Types} typecode
     * @param length The datatype length
     * @param precision The datatype precision
     * @param scale The datatype scale
     * @return the database type name
     * @throws HibernateException If no mapping was specified for that type.
     */
    public String getTypeName(int code, int length, int precision, int scale) throws HibernateException {
        String result = typeNames.get(code, length, precision, scale);
        if (result == null) {
            throw new HibernateException(
                    "No type mapping for java.sql.Types code: " + code + ", length: " + length);
        }
        return result;
    }

    /**
     * Get the name of the database type appropriate for casting operations
     * (via the CAST() SQL function) for the given {@link java.sql.Types} typecode.
     *
     * @param code The {@link java.sql.Types} typecode
     * @return The database type name
     */
    public String getCastTypeName(int code) {
        return getTypeName(code, Column.DEFAULT_LENGTH, Column.DEFAULT_PRECISION, Column.DEFAULT_SCALE);
    }

    /**
     * Subclasses register a type name for the given type code and maximum
     * column length. <tt>$l</tt> in the type name with be replaced by the
     * column length (if appropriate).
     *
     * @param code The {@link java.sql.Types} typecode
     * @param capacity The maximum length of database type
     * @param name The database type name
     */
    protected void registerColumnType(int code, int capacity, String name) {
        typeNames.put(code, capacity, name);
    }

    /**
     * Subclasses register a type name for the given type code. <tt>$l</tt> in
     * the type name with be replaced by the column length (if appropriate).
     *
     * @param code The {@link java.sql.Types} typecode
     * @param name The database type name
     */
    protected void registerColumnType(int code, String name) {
        typeNames.put(code, name);
    }

    // hibernate type mapping support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Get the name of the Hibernate {@link org.hibernate.type.Type} associated with th given
     * {@link java.sql.Types} typecode.
     *
     * @param code The {@link java.sql.Types} typecode
     * @return The Hibernate {@link org.hibernate.type.Type} name.
     * @throws HibernateException If no mapping was specified for that type.
     */
    public String getHibernateTypeName(int code) throws HibernateException {
        String result = hibernateTypeNames.get(code);
        if (result == null) {
            throw new HibernateException("No Hibernate type mapping for java.sql.Types code: " + code);
        }
        return result;
    }

    /**
     * Get the name of the Hibernate {@link org.hibernate.type.Type} associated
     * with the given {@link java.sql.Types} typecode with the given storage
     * specification parameters.
     *
     * @param code The {@link java.sql.Types} typecode
     * @param length The datatype length
     * @param precision The datatype precision
     * @param scale The datatype scale
     * @return The Hibernate {@link org.hibernate.type.Type} name.
     * @throws HibernateException If no mapping was specified for that type.
     */
    public String getHibernateTypeName(int code, int length, int precision, int scale) throws HibernateException {
        String result = hibernateTypeNames.get(code, length, precision, scale);
        if (result == null) {
            throw new HibernateException(
                    "No Hibernate type mapping for java.sql.Types code: " + code + ", length: " + length);
        }
        return result;
    }

    /**
     * Registers a Hibernate {@link org.hibernate.type.Type} name for the given
     * {@link java.sql.Types} type code and maximum column length.
     *
     * @param code The {@link java.sql.Types} typecode
     * @param capacity The maximum length of database type
     * @param name The Hibernate {@link org.hibernate.type.Type} name
     */
    protected void registerHibernateType(int code, int capacity, String name) {
        hibernateTypeNames.put(code, capacity, name);
    }

    /**
     * Registers a Hibernate {@link org.hibernate.type.Type} name for the given
     * {@link java.sql.Types} type code.
     *
     * @param code The {@link java.sql.Types} typecode
     * @param name The Hibernate {@link org.hibernate.type.Type} name
     */
    protected void registerHibernateType(int code, String name) {
        hibernateTypeNames.put(code, name);
    }

    // function support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    protected void registerFunction(String name, SQLFunction function) {
        sqlFunctions.put(name, function);
    }

    /**
     * Retrieves a map of the dialect's registered fucntions
     * (functionName => {@link org.hibernate.dialect.function.SQLFunction}).
     *
     * @return The map of registered functions.
     */
    public final Map getFunctions() {
        return sqlFunctions;
    }

    // keyword support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    protected void registerKeyword(String word) {
        sqlKeywords.add(word);
    }

    public Set getKeywords() {
        return sqlKeywords;
    }

    // native identifier generatiion ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * The class (which implements {@link org.hibernate.id.IdentifierGenerator})
     * which acts as this dialects native generation strategy.
     * <p/>
     * Comes into play whenever the user specifies the native generator.
     *
     * @return The native generator class.
     */
    public Class getNativeIdentifierGeneratorClass() {
        if (supportsIdentityColumns()) {
            return IdentityGenerator.class;
        } else if (supportsSequences()) {
            return SequenceGenerator.class;
        } else {
            return TableHiLoGenerator.class;
        }
    }

    // IDENTITY support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Does this dialect support identity column key generation?
     *
     * @return True if IDENTITY columns are supported; false otherwise.
     */
    public boolean supportsIdentityColumns() {
        return false;
    }

    /**
     * Does the dialect support some form of inserting and selecting
     * the generated IDENTITY value all in the same statement.
     *
     * @return True if the dialect supports selecting the just
     * generated IDENTITY in the insert statement.
     */
    public boolean supportsInsertSelectIdentity() {
        return false;
    }

    /**
     * Whether this dialect have an Identity clause added to the data type or a
     * completely seperate identity data type
     *
     * @return boolean
     */
    public boolean hasDataTypeInIdentityColumn() {
        return true;
    }

    /**
     * Provided we {@link #supportsInsertSelectIdentity}, then attch the
     * "select identity" clause to the  insert statement.
     *  <p/>
     * Note, if {@link #supportsInsertSelectIdentity} == false then
     * the insert-string should be returned without modification.
     *
     * @param insertString The insert command
     * @return The insert command with any necessary identity select
     * clause attached.
     */
    public String appendIdentitySelectToInsert(String insertString) {
        return insertString;
    }

    /**
     * Get the select command to use to retrieve the last generated IDENTITY
     * value for a particuar table
     *
     * @param table The table into which the insert was done
     * @param column The PK column.
     * @param type The {@link java.sql.Types} type code.
     * @return The appropriate select command
     * @throws MappingException If IDENTITY generation is not supported.
     */
    public String getIdentitySelectString(String table, String column, int type) throws MappingException {
        return getIdentitySelectString();
    }

    /**
     * Get the select command to use to retrieve the last generated IDENTITY
     * value.
     *
     * @return The appropriate select command
     * @throws MappingException If IDENTITY generation is not supported.
     */
    protected String getIdentitySelectString() throws MappingException {
        throw new MappingException("Dialect does not support identity key generation");
    }

    /**
     * The syntax used during DDL to define a column as being an IDENTITY of
     * a particular type.
     *
     * @param type The {@link java.sql.Types} type code.
     * @return The appropriate DDL fragment.
     * @throws MappingException If IDENTITY generation is not supported.
     */
    public String getIdentityColumnString(int type) throws MappingException {
        return getIdentityColumnString();
    }

    /**
     * The syntax used during DDL to define a column as being an IDENTITY.
     *
     * @return The appropriate DDL fragment.
     * @throws MappingException If IDENTITY generation is not supported.
     */
    protected String getIdentityColumnString() throws MappingException {
        throw new MappingException("Dialect does not support identity key generation");
    }

    /**
     * The keyword used to insert a generated value into an identity column (or null).
     * Need if the dialect does not support inserts that specify no column values.
     *
     * @return The appropriate keyword.
     */
    public String getIdentityInsertString() {
        return null;
    }

    // SEQUENCE support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Does this dialect support sequences?
     *
     * @return True if sequences supported; false otherwise.
     */
    public boolean supportsSequences() {
        return false;
    }

    /**
     * Does this dialect support "pooled" sequences.  Not aware of a better
     * name for this.  Essentially can we specify the initial and increment values?
     *
     * @return True if such "pooled" sequences are supported; false otherwise.
     * @see #getCreateSequenceStrings(String, int, int)
     * @see #getCreateSequenceString(String, int, int)
     */
    public boolean supportsPooledSequences() {
        return false;
    }

    /**
     * Generate the appropriate select statement to to retreive the next value
     * of a sequence.
     * <p/>
     * This should be a "stand alone" select statement.
     *
     * @param sequenceName the name of the sequence
     * @return String The "nextval" select string.
     * @throws MappingException If sequences are not supported.
     */
    public String getSequenceNextValString(String sequenceName) throws MappingException {
        throw new MappingException("Dialect does not support sequences");
    }

    /**
     * Generate the select expression fragment that will retreive the next
     * value of a sequence as part of another (typically DML) statement.
     * <p/>
     * This differs from {@link #getSequenceNextValString(String)} in that this
     * should return an expression usable within another statement.
     *
     * @param sequenceName the name of the sequence
     * @return The "nextval" fragment.
     * @throws MappingException If sequences are not supported.
     */
    public String getSelectSequenceNextValString(String sequenceName) throws MappingException {
        throw new MappingException("Dialect does not support sequences");
    }

    /**
     * The multiline script used to create a sequence.
     *
     * @param sequenceName The name of the sequence
     * @return The sequence creation commands
     * @throws MappingException If sequences are not supported.
     * @deprecated Use {@link #getCreateSequenceString(String, int, int)} instead
     */
    public String[] getCreateSequenceStrings(String sequenceName) throws MappingException {
        return new String[] { getCreateSequenceString(sequenceName) };
    }

    /**
     * An optional multi-line form for databases which {@link #supportsPooledSequences()}.
     *
     * @param sequenceName The name of the sequence
     * @param initialValue The initial value to apply to 'create sequence' statement
     * @param incrementSize The increment value to apply to 'create sequence' statement
     * @return The sequence creation commands
     * @throws MappingException If sequences are not supported.
     */
    public String[] getCreateSequenceStrings(String sequenceName, int initialValue, int incrementSize)
            throws MappingException {
        return new String[] { getCreateSequenceString(sequenceName, initialValue, incrementSize) };
    }

    /**
     * Typically dialects which support sequences can create a sequence
     * with a single command.  This is convenience form of
     * {@link #getCreateSequenceStrings} to help facilitate that.
     * <p/>
     * Dialects which support sequences and can create a sequence in a
     * single command need *only* override this method.  Dialects
     * which support sequences but require multiple commands to create
     * a sequence should instead override {@link #getCreateSequenceStrings}.
     *
     * @param sequenceName The name of the sequence
     * @return The sequence creation command
     * @throws MappingException If sequences are not supported.
     */
    protected String getCreateSequenceString(String sequenceName) throws MappingException {
        throw new MappingException("Dialect does not support sequences");
    }

    /**
     * Overloaded form of {@link #getCreateSequenceString(String)}, additionally
     * taking the initial value and increment size to be applied to the sequence
     * definition.
     * </p>
     * The default definition is to suffix {@link #getCreateSequenceString(String)}
     * with the string: " start with {initialValue} increment by {incrementSize}" where
     * {initialValue} and {incrementSize} are replacement placeholders.  Generally
     * dialects should only need to override this method if different key phrases
     * are used to apply the allocation information.
     *
     * @param sequenceName The name of the sequence
     * @param initialValue The initial value to apply to 'create sequence' statement
     * @param incrementSize The increment value to apply to 'create sequence' statement
     * @return The sequence creation command
     * @throws MappingException If sequences are not supported.
     */
    protected String getCreateSequenceString(String sequenceName, int initialValue, int incrementSize)
            throws MappingException {
        if (supportsPooledSequences()) {
            return getCreateSequenceString(sequenceName) + " start with " + initialValue + " increment by "
                    + incrementSize;
        }
        throw new MappingException("Dialect does not support pooled sequences");
    }

    /**
     * The multiline script used to drop a sequence.
     *
     * @param sequenceName The name of the sequence
     * @return The sequence drop commands
     * @throws MappingException If sequences are not supported.
     */
    public String[] getDropSequenceStrings(String sequenceName) throws MappingException {
        return new String[] { getDropSequenceString(sequenceName) };
    }

    /**
     * Typically dialects which support sequences can drop a sequence
     * with a single command.  This is convenience form of
     * {@link #getDropSequenceStrings} to help facilitate that.
     * <p/>
     * Dialects which support sequences and can drop a sequence in a
     * single command need *only* override this method.  Dialects
     * which support sequences but require multiple commands to drop
     * a sequence should instead override {@link #getDropSequenceStrings}.
     *
     * @param sequenceName The name of the sequence
     * @return The sequence drop commands
     * @throws MappingException If sequences are not supported.
     */
    protected String getDropSequenceString(String sequenceName) throws MappingException {
        throw new MappingException("Dialect does not support sequences");
    }

    /**
     * Get the select command used retrieve the names of all sequences.
     *
     * @return The select command; or null if sequences are not supported.
     * @see org.hibernate.tool.hbm2ddl.SchemaUpdate
     */
    public String getQuerySequencesString() {
        return null;
    }

    // GUID support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Get the command used to select a GUID from the underlying database.
     * <p/>
     * Optional operation.
     *
     * @return The appropriate command.
     */
    public String getSelectGUIDString() {
        throw new UnsupportedOperationException("dialect does not support GUIDs");
    }

    // limit/offset support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Does this dialect support some form of limiting query results
     * via a SQL clause?
     *
     * @return True if this dialect supports some form of LIMIT.
     */
    public boolean supportsLimit() {
        return false;
    }

    /**
     * Does this dialect's LIMIT support (if any) additionally
     * support specifying an offset?
     *
     * @return True if the dialect supports an offset within the limit support.
     */
    public boolean supportsLimitOffset() {
        return supportsLimit();
    }

    /**
     * Does this dialect support bind variables (i.e., prepared statememnt
     * parameters) for its limit/offset?
     *
     * @return True if bind variables can be used; false otherwise.
     */
    public boolean supportsVariableLimit() {
        return supportsLimit();
    }

    /**
     * ANSI SQL defines the LIMIT clause to be in the form LIMIT offset, limit.
     * Does this dialect require us to bind the parameters in reverse order?
     *
     * @return true if the correct order is limit, offset
     */
    public boolean bindLimitParametersInReverseOrder() {
        return false;
    }

    /**
     * Does the <tt>LIMIT</tt> clause come at the start of the
     * <tt>SELECT</tt> statement, rather than at the end?
     *
     * @return true if limit parameters should come before other parameters
     */
    public boolean bindLimitParametersFirst() {
        return false;
    }

    /**
     * Does the <tt>LIMIT</tt> clause take a "maximum" row number instead
     * of a total number of returned rows?
     * <p/>
     * This is easiest understood via an example.  Consider you have a table
     * with 20 rows, but you only want to retrieve rows number 11 through 20.
     * Generally, a limit with offset would say that the offset = 11 and the
     * limit = 10 (we only want 10 rows at a time); this is specifying the
     * total number of returned rows.  Some dialects require that we instead
     * specify offset = 11 and limit = 20, where 20 is the "last" row we want
     * relative to offset (i.e. total number of rows = 20 - 11 = 9)
     * <p/>
     * So essentially, is limit relative from offset?  Or is limit absolute?
     *
     * @return True if limit is relative from offset; false otherwise.
     */
    public boolean useMaxForLimit() {
        return false;
    }

    /**
     * Generally, if there is no limit applied to a Hibernate query we do not apply any limits
     * to the SQL query.  This option forces that the limit be written to the SQL query.
     *
     * @return True to force limit into SQL query even if none specified in Hibernate query; false otherwise.
     */
    public boolean forceLimitUsage() {
        return false;
    }

    /**
     * Given a limit and an offset, apply the limit clause to the query.
     *
     * @param query The query to which to apply the limit.
     * @param offset The offset of the limit
     * @param limit The limit of the limit ;)
     * @return The modified query statement with the limit applied.
     */
    public String getLimitString(String query, int offset, int limit) {
        return getLimitString(query, (offset > 0 || forceLimitUsage()));
    }

    /**
     * Apply s limit clause to the query.
     * <p/>
     * Typically dialects utilize {@link #supportsVariableLimit() variable}
     * limit caluses when they support limits.  Thus, when building the
     * select command we do not actually need to know the limit or the offest
     * since we will just be using placeholders.
     * <p/>
     * Here we do still pass along whether or not an offset was specified
     * so that dialects not supporting offsets can generate proper exceptions.
     * In general, dialects will override one or the other of this method and
     * {@link #getLimitString(String, int, int)}.
     *
     * @param query The query to which to apply the limit.
     * @param hasOffset Is the query requesting an offset?
     * @return the modified SQL
     */
    protected String getLimitString(String query, boolean hasOffset) {
        throw new UnsupportedOperationException("paged queries not supported");
    }

    /**
     * Hibernate APIs explcitly state that setFirstResult() should be a zero-based offset. Here we allow the
     * Dialect a chance to convert that value based on what the underlying db or driver will expect.
     * <p/>
     * NOTE: what gets passed into {@link #getLimitString(String,int,int)} is the zero-based offset.  Dialects which
     * do not {@link #supportsVariableLimit} should take care to perform any needed {@link #convertToFirstRowValue}
     * calls prior to injecting the limit values into the SQL string.
     *
     * @param zeroBasedFirstResult The user-supplied, zero-based first row offset.
     *
     * @return The corresponding db/dialect specific offset.
     *
     * @see org.hibernate.Query#setFirstResult
     * @see org.hibernate.Criteria#setFirstResult
     */
    public int convertToFirstRowValue(int zeroBasedFirstResult) {
        return zeroBasedFirstResult;
    }

    // lock acquisition support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Get a strategy instance which knows how to acquire a database-level lock
     * of the specified mode for this dialect.
     *
     * @param lockable The persister for the entity to be locked.
     * @param lockMode The type of lock to be acquired.
     * @return The appropriate locking strategy.
     * @since 3.2
     */
    public LockingStrategy getLockingStrategy(Lockable lockable, LockMode lockMode) {
        return new SelectLockingStrategy(lockable, lockMode);
    }

    /**
     * Given a lock mode, determine the appropriate for update fragment to use.
     *
     * @param lockMode The lock mode to apply.
     * @return The appropriate for update fragment.
     */
    public String getForUpdateString(LockMode lockMode) {
        if (lockMode == LockMode.UPGRADE) {
            return getForUpdateString();
        } else if (lockMode == LockMode.UPGRADE_NOWAIT) {
            return getForUpdateNowaitString();
        } else if (lockMode == LockMode.FORCE) {
            return getForUpdateNowaitString();
        } else {
            return "";
        }
    }

    /**
     * Get the string to append to SELECT statements to acquire locks
     * for this dialect.
     *
     * @return The appropriate <tt>FOR UPDATE</tt> clause string.
     */
    public String getForUpdateString() {
        return " for update";
    }

    /**
     * Is <tt>FOR UPDATE OF</tt> syntax supported?
     *
     * @return True if the database supports <tt>FOR UPDATE OF</tt> syntax;
     * false otherwise.
     */
    public boolean forUpdateOfColumns() {
        // by default we report no support
        return false;
    }

    /**
     * Does this dialect support <tt>FOR UPDATE</tt> in conjunction with
     * outer joined rows?
     *
     * @return True if outer joined rows can be locked via <tt>FOR UPDATE</tt>.
     */
    public boolean supportsOuterJoinForUpdate() {
        return true;
    }

    /**
     * Get the <tt>FOR UPDATE OF column_list</tt> fragment appropriate for this
     * dialect given the aliases of the columns to be write locked.
     *
     * @param aliases The columns to be write locked.
     * @return The appropriate <tt>FOR UPDATE OF column_list</tt> clause string.
     */
    public String getForUpdateString(String aliases) {
        // by default we simply return the getForUpdateString() result since
        // the default is to say no support for "FOR UPDATE OF ..."
        return getForUpdateString();
    }

    /**
     * Retrieves the <tt>FOR UPDATE NOWAIT</tt> syntax specific to this dialect.
     *
     * @return The appropriate <tt>FOR UPDATE NOWAIT</tt> clause string.
     */
    public String getForUpdateNowaitString() {
        // by default we report no support for NOWAIT lock semantics
        return getForUpdateString();
    }

    /**
     * Get the <tt>FOR UPDATE OF column_list NOWAIT</tt> fragment appropriate
     * for this dialect given the aliases of the columns to be write locked.
     *
     * @param aliases The columns to be write locked.
     * @return The appropriate <tt>FOR UPDATE colunm_list NOWAIT</tt> clause string.
     */
    public String getForUpdateNowaitString(String aliases) {
        return getForUpdateString(aliases);
    }

    /**
     * Some dialects support an alternative means to <tt>SELECT FOR UPDATE</tt>,
     * whereby a "lock hint" is appends to the table name in the from clause.
     * <p/>
     * contributed by <a href="http://sourceforge.net/users/heschulz">Helge Schulz</a>
     *
     * @param mode The lock mode to apply
     * @param tableName The name of the table to which to apply the lock hint.
     * @return The table with any required lock hints.
     */
    public String appendLockHint(LockMode mode, String tableName) {
        return tableName;
    }

    /**
     * Modifies the given SQL by applying the appropriate updates for the specified
     * lock modes and key columns.
     * <p/>
     * The behavior here is that of an ANSI SQL <tt>SELECT FOR UPDATE</tt>.  This
     * method is really intended to allow dialects which do not support
     * <tt>SELECT FOR UPDATE</tt> to achieve this in their own fashion.
     *
     * @param sql the SQL string to modify
     * @param aliasedLockModes a map of lock modes indexed by aliased table names.
     * @param keyColumnNames a map of key columns indexed by aliased table names.
     * @return the modified SQL string.
     */
    public String applyLocksToSql(String sql, Map aliasedLockModes, Map keyColumnNames) {
        return sql + new ForUpdateFragment(this, aliasedLockModes, keyColumnNames).toFragmentString();
    }

    // table support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Command used to create a table.
     *
     * @return The command used to create a table.
     */
    public String getCreateTableString() {
        return "create table";
    }

    /**
     * Slight variation on {@link #getCreateTableString}.  Here, we have the
     * command used to create a table when there is no primary key and
     * duplicate rows are expected.
     * <p/>
     * Most databases do not care about the distinction; originally added for
     * Teradata support which does care.
     *
     * @return The command used to create a multiset table.
     */
    public String getCreateMultisetTableString() {
        return getCreateTableString();
    }

    // temporary table support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Does this dialect support temporary tables?
     *
     * @return True if temp tables are supported; false otherwise.
     */
    public boolean supportsTemporaryTables() {
        return false;
    }

    /**
     * Generate a temporary table name given the bas table.
     *
     * @param baseTableName The table name from which to base the temp table name.
     * @return The generated temp table name.
     */
    public String generateTemporaryTableName(String baseTableName) {
        return "HT_" + baseTableName;
    }

    /**
     * Command used to create a temporary table.
     *
     * @return The command used to create a temporary table.
     */
    public String getCreateTemporaryTableString() {
        return "create table";
    }

    /**
     * Get any fragments needing to be postfixed to the command for
     * temporary table creation.
     *
     * @return Any required postfix.
     */
    public String getCreateTemporaryTablePostfix() {
        return "";
    }

    /**
     * Does the dialect require that temporary table DDL statements occur in
     * isolation from other statements?  This would be the case if the creation
     * would cause any current transaction to get committed implicitly.
     * <p/>
     * JDBC defines a standard way to query for this information via the
     * {@link java.sql.DatabaseMetaData#dataDefinitionCausesTransactionCommit()}
     * method.  However, that does not distinguish between temporary table
     * DDL and other forms of DDL; MySQL, for example, reports DDL causing a
     * transaction commit via its driver, even though that is not the case for
     * temporary table DDL.
     * <p/>
     * Possible return values and their meanings:<ul>
     * <li>{@link Boolean#TRUE} - Unequivocally, perform the temporary table DDL
     * in isolation.</li>
     * <li>{@link Boolean#FALSE} - Unequivocally, do <b>not</b> perform the
     * temporary table DDL in isolation.</li>
     * <li><i>null</i> - defer to the JDBC driver response in regards to
     * {@link java.sql.DatabaseMetaData#dataDefinitionCausesTransactionCommit()}</li>
     * </ul>
     *
     * @return see the result matrix above.
     */
    public Boolean performTemporaryTableDDLInIsolation() {
        return null;
    }

    /**
     * Do we need to drop the temporary table after use?
     *
     * @return True if the table should be dropped.
     */
    public boolean dropTemporaryTableAfterUse() {
        return true;
    }

    // callable statement support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Registers an OUT parameter which will be returing a
     * {@link java.sql.ResultSet}.  How this is accomplished varies greatly
     * from DB to DB, hence its inclusion (along with {@link #getResultSet}) here.
     *
     * @param statement The callable statement.
     * @param position The bind position at which to register the OUT param.
     * @return The number of (contiguous) bind positions used.
     * @throws SQLException Indicates problems registering the OUT param.
     */
    public int registerResultSetOutParameter(CallableStatement statement, int position) throws SQLException {
        throw new UnsupportedOperationException(
                getClass().getName() + " does not support resultsets via stored procedures");
    }

    /**
     * Given a callable statement previously processed by {@link #registerResultSetOutParameter},
     * extract the {@link java.sql.ResultSet} from the OUT parameter.
     *
     * @param statement The callable statement.
     * @return The extracted result set.
     * @throws SQLException Indicates problems extracting the result set.
     */
    public ResultSet getResultSet(CallableStatement statement) throws SQLException {
        throw new UnsupportedOperationException(
                getClass().getName() + " does not support resultsets via stored procedures");
    }

    // current timestamp support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Does this dialect support a way to retrieve the database's current
     * timestamp value?
     *
     * @return True if the current timestamp can be retrieved; false otherwise.
     */
    public boolean supportsCurrentTimestampSelection() {
        return false;
    }

    /**
     * Should the value returned by {@link #getCurrentTimestampSelectString}
     * be treated as callable.  Typically this indicates that JDBC escape
     * sytnax is being used...
     *
     * @return True if the {@link #getCurrentTimestampSelectString} return
     * is callable; false otherwise.
     */
    public boolean isCurrentTimestampSelectStringCallable() {
        throw new UnsupportedOperationException("Database not known to define a current timestamp function");
    }

    /**
     * Retrieve the command used to retrieve the current timestammp from the
     * database.
     *
     * @return The command.
     */
    public String getCurrentTimestampSelectString() {
        throw new UnsupportedOperationException("Database not known to define a current timestamp function");
    }

    /**
     * The name of the database-specific SQL function for retrieving the
     * current timestamp.
     *
     * @return The function name.
     */
    public String getCurrentTimestampSQLFunctionName() {
        // the standard SQL function name is current_timestamp...
        return "current_timestamp";
    }

    // SQLException support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Build an instance of the SQLExceptionConverter preferred by this dialect for
     * converting SQLExceptions into Hibernate's JDBCException hierarchy.  The default
     * Dialect implementation simply returns a converter based on X/Open SQLState codes.
     * <p/>
     * It is strongly recommended that specific Dialect implementations override this
     * method, since interpretation of a SQL error is much more accurate when based on
     * the ErrorCode rather than the SQLState.  Unfortunately, the ErrorCode is a vendor-
     * specific approach.
     *
     * @return The Dialect's preferred SQLExceptionConverter.
     */
    public SQLExceptionConverter buildSQLExceptionConverter() {
        // The default SQLExceptionConverter for all dialects is based on SQLState
        // since SQLErrorCode is extremely vendor-specific.  Specific Dialects
        // may override to return whatever is most appropriate for that vendor.
        return new SQLStateConverter(getViolatedConstraintNameExtracter());
    }

    private static final ViolatedConstraintNameExtracter EXTRACTER = new ViolatedConstraintNameExtracter() {
        public String extractConstraintName(SQLException sqle) {
            return null;
        }
    };

    public ViolatedConstraintNameExtracter getViolatedConstraintNameExtracter() {
        return EXTRACTER;
    }

    // union subclass support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Given a {@link java.sql.Types} type code, determine an appropriate
     * null value to use in a select clause.
     * <p/>
     * One thing to consider here is that certain databases might
     * require proper casting for the nulls here since the select here
     * will be part of a UNION/UNION ALL.
     *
     * @param sqlType The {@link java.sql.Types} type code.
     * @return The appropriate select clause value fragment.
     */
    public String getSelectClauseNullString(int sqlType) {
        return "null";
    }

    /**
     * Does this dialect support UNION ALL, which is generally a faster
     * variant of UNION?
     *
     * @return True if UNION ALL is supported; false otherwise.
     */
    public boolean supportsUnionAll() {
        return false;
    }

    // miscellaneous support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Create a {@link org.hibernate.sql.JoinFragment} strategy responsible
     * for handling this dialect's variations in how joins are handled.
     *
     * @return This dialect's {@link org.hibernate.sql.JoinFragment} strategy.
     */
    public JoinFragment createOuterJoinFragment() {
        return new ANSIJoinFragment();
    }

    /**
     * Create a {@link org.hibernate.sql.CaseFragment} strategy responsible
     * for handling this dialect's variations in how CASE statements are
     * handled.
     *
     * @return This dialect's {@link org.hibernate.sql.CaseFragment} strategy.
     */
    public CaseFragment createCaseFragment() {
        return new ANSICaseFragment();
    }

    /**
     * The fragment used to insert a row without specifying any column values.
     * This is not possible on some databases.
     *
     * @return The appropriate empty values clause.
     */
    public String getNoColumnsInsertString() {
        return "values ( )";
    }

    /**
     * The name of the SQL function that transforms a string to
     * lowercase
     *
     * @return The dialect-specific lowercase function.
     */
    public String getLowercaseFunction() {
        return "lower";
    }

    /**
     * Meant as a means for end users to affect the select strings being sent
     * to the database and perhaps manipulate them in some fashion.
     * <p/>
     * The recommend approach is to instead use
     * {@link org.hibernate.Interceptor#onPrepareStatement(String)}.
     *
     * @param select The select command
     * @return The mutated select command, or the same as was passed in.
     */
    public String transformSelectString(String select) {
        return select;
    }

    /**
     * What is the maximum length Hibernate can use for generated aliases?
     *
     * @return The maximum length.
     */
    public int getMaxAliasLength() {
        return 10;
    }

    /**
     * The SQL literal value to which this database maps boolean values.
     *
     * @param bool The boolean value
     * @return The appropriate SQL literal.
     */
    public String toBooleanValueString(boolean bool) {
        return bool ? "1" : "0";
    }

    // identifier quoting support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * The character specific to this dialect used to begin a quoted identifier.
     *
     * @return The dialect's specific open quote character.
     */
    public char openQuote() {
        return '"';
    }

    /**
     * The character specific to this dialect used to close a quoted identifier.
     *
     * @return The dialect's specific close quote character.
     */
    public char closeQuote() {
        return '"';
    }

    /**
     * Apply dialect-specific quoting.
     * <p/>
     * By default, the incoming value is checked to see if its first character
     * is the back-tick (`).  If so, the dialect specific quoting is applied.
     *
     * @param column The value to be quoted.
     * @return The quoted (or unmodified, if not starting with back-tick) value.
     * @see #openQuote()
     * @see #closeQuote()
     */
    public final String quote(String column) {
        if (column.charAt(0) == '`') {
            return openQuote() + column.substring(1, column.length() - 1) + closeQuote();
        } else {
            return column;
        }
    }

    // DDL support ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Does this dialect support the <tt>ALTER TABLE</tt> syntax?
     *
     * @return True if we support altering of tables; false otherwise.
     */
    public boolean hasAlterTable() {
        return true;
    }

    /**
     * Do we need to drop constraints before dropping tables in this dialect?
     *
     * @return True if constraints must be dropped prior to dropping
     * the table; false otherwise.
     */
    public boolean dropConstraints() {
        return true;
    }

    /**
     * Do we need to qualify index names with the schema name?
     *
     * @return boolean
     */
    public boolean qualifyIndexName() {
        return true;
    }

    /**
     * Does this dialect support the <tt>UNIQUE</tt> column syntax?
     *
     * @return boolean
     */
    public boolean supportsUnique() {
        return true;
    }

    /**
     * Does this dialect support adding Unique constraints via create and alter table ?
     * @return boolean
     */
    public boolean supportsUniqueConstraintInCreateAlterTable() {
        return true;
    }

    /**
     * The syntax used to add a column to a table (optional).
     *
     * @return The "add column" fragment.
     */
    public String getAddColumnString() {
        throw new UnsupportedOperationException("No add column syntax supported by Dialect");
    }

    public String getDropForeignKeyString() {
        return " drop constraint ";
    }

    public String getTableTypeString() {
        // grrr... for differentiation of mysql storage engines
        return "";
    }

    /**
     * The syntax used to add a foreign key constraint to a table.
     *
     * @param constraintName The FK constraint name.
     * @param foreignKey The names of the columns comprising the FK
     * @param referencedTable The table referenced by the FK
     * @param primaryKey The explicit columns in the referencedTable referenced
     * by this FK.
     * @param referencesPrimaryKey if false, constraint should be
     * explicit about which column names the constraint refers to
     *
     * @return the "add FK" fragment
     */
    public String getAddForeignKeyConstraintString(String constraintName, String[] foreignKey,
            String referencedTable, String[] primaryKey, boolean referencesPrimaryKey) {
        StringBuffer res = new StringBuffer(30);

        res.append(" add constraint ").append(constraintName).append(" foreign key (")
                .append(StringHelper.join(", ", foreignKey)).append(") references ").append(referencedTable);

        if (!referencesPrimaryKey) {
            res.append(" (").append(StringHelper.join(", ", primaryKey)).append(')');
        }

        return res.toString();
    }

    /**
     * The syntax used to add a primary key constraint to a table.
     *
     * @param constraintName The name of the PK constraint.
     * @return The "add PK" fragment
     */
    public String getAddPrimaryKeyConstraintString(String constraintName) {
        return " add constraint " + constraintName + " primary key ";
    }

    public boolean hasSelfReferentialForeignKeyBug() {
        return false;
    }

    /**
     * The keyword used to specify a nullable column.
     *
     * @return String
     */
    public String getNullColumnString() {
        return "";
    }

    public boolean supportsCommentOn() {
        return false;
    }

    public String getTableComment(String comment) {
        return "";
    }

    public String getColumnComment(String comment) {
        return "";
    }

    public boolean supportsIfExistsBeforeTableName() {
        return false;
    }

    public boolean supportsIfExistsAfterTableName() {
        return false;
    }

    /**
     * Does this dialect support column-level check constraints?
     *
     * @return True if column-level CHECK constraints are supported; false
     * otherwise.
     */
    public boolean supportsColumnCheck() {
        return true;
    }

    /**
     * Does this dialect support table-level check constraints?
     *
     * @return True if table-level CHECK constraints are supported; false
     * otherwise.
     */
    public boolean supportsTableCheck() {
        return true;
    }

    public boolean supportsCascadeDelete() {
        return true;
    }

    public boolean supportsNotNullUnique() {
        return true;
    }

    /**
     * Completely optional cascading drop clause
     *
     * @return String
     */
    public String getCascadeConstraintsString() {
        return "";
    }

    // Informational metadata ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    /**
     * Does this dialect support empty IN lists?
     * <p/>
     * For example, is [where XYZ in ()] a supported construct?
     *
     * @return True if empty in lists are supported; false otherwise.
     * @since 3.2
     */
    public boolean supportsEmptyInList() {
        return true;
    }

    /**
     * Are string comparisons implicitly case insensitive.
     * <p/>
     * In other words, does [where 'XYZ' = 'xyz'] resolve to true?
     *
     * @return True if comparisons are case insensitive.
     * @since 3.2
     */
    public boolean areStringComparisonsCaseInsensitive() {
        return false;
    }

    /**
     * Is this dialect known to support what ANSI-SQL terms "row value
     * constructor" syntax; sometimes called tuple syntax.
     * <p/>
     * Basically, does it support syntax like
     * "... where (FIRST_NAME, LAST_NAME) = ('Steve', 'Ebersole') ...".
     *
     * @return True if this SQL dialect is known to support "row value
     * constructor" syntax; false otherwise.
     * @since 3.2
     */
    public boolean supportsRowValueConstructorSyntax() {
        // return false here, as most databases do not properly support this construct...
        return false;
    }

    /**
     * If the dialect supports {@link #supportsRowValueConstructorSyntax() row values},
     * does it offer such support in IN lists as well?
     * <p/>
     * For example, "... where (FIRST_NAME, LAST_NAME) IN ( (?, ?), (?, ?) ) ..."
     *
     * @return True if this SQL dialect is known to support "row value
     * constructor" syntax in the IN list; false otherwise.
     * @since 3.2
     */
    public boolean supportsRowValueConstructorSyntaxInInList() {
        return false;
    }

    /**
     * Should LOBs (both BLOB and CLOB) be bound using stream operations (i.e.
     * {@link java.sql.PreparedStatement#setBinaryStream}).
     *
     * @return True if BLOBs and CLOBs should be bound using stream operations.
     * @since 3.2
     */
    public boolean useInputStreamToInsertBlob() {
        return true;
    }

    /**
     * Does this dialect support parameters within the select clause of
     * INSERT ... SELECT ... ? ... statements?
     *
     * @return True if this is supported; false otherwise.
     * @since 3.2
     */
    public boolean supportsParametersInInsertSelect() {
        return true;
    }

    /**
     * Does this dialect require that parameters appearing in the <tt>SELECT</tt> clause be wrapped in <tt>cast()</tt>
     * calls to tell the db parser the expected type.
     *
     * @return True if select clause parameter must be cast()ed
     * @since 3.2
     */
    public boolean requiresCastingOfParametersInSelectClause() {
        return false;
    }

    /**
     * Does this dialect support asking the result set its positioning
     * information on forward only cursors.  Specifically, in the case of
     * scrolling fetches, Hibernate needs to use
     * {@link java.sql.ResultSet#isAfterLast} and
     * {@link java.sql.ResultSet#isBeforeFirst}.  Certain drivers do not
     * allow access to these methods for forward only cursors.
     * <p/>
     * NOTE : this is highly driver dependent!
     *
     * @return True if methods like {@link java.sql.ResultSet#isAfterLast} and
     * {@link java.sql.ResultSet#isBeforeFirst} are supported for forward
     * only cursors; false otherwise.
     * @since 3.2
     */
    public boolean supportsResultSetPositionQueryMethodsOnForwardOnlyCursor() {
        return true;
    }

    /**
     * Does this dialect support definition of cascade delete constraints
     * which can cause circular chains?
     *
     * @return True if circular cascade delete constraints are supported; false
     * otherwise.
     * @since 3.2
     */
    public boolean supportsCircularCascadeDeleteConstraints() {
        return true;
    }

    /**
     * Are subselects supported as the left-hand-side (LHS) of
     * IN-predicates.
     * <p/>
     * In other words, is syntax like "... <subquery> IN (1, 2, 3) ..." supported?
     *
     * @return True if subselects can appear as the LHS of an in-predicate;
     * false otherwise.
     * @since 3.2
     */
    public boolean supportsSubselectAsInPredicateLHS() {
        return true;
    }

    /**
     * Expected LOB usage pattern is such that I can perform an insert
     * via prepared statement with a parameter binding for a LOB value
     * without crazy casting to JDBC driver implementation-specific classes...
     * <p/>
     * Part of the trickiness here is the fact that this is largely
     * driver dependent.  For example, Oracle (which is notoriously bad with
     * LOB support in their drivers historically) actually does a pretty good
     * job with LOB support as of the 10.2.x versions of their drivers...
     *
     * @return True if normal LOB usage patterns can be used with this driver;
     * false if driver-specific hookiness needs to be applied.
     * @since 3.2
     */
    public boolean supportsExpectedLobUsagePattern() {
        return true;
    }

    /**
     * Does the dialect support propogating changes to LOB
     * values back to the database?  Talking about mutating the
     * internal value of the locator as opposed to supplying a new
     * locator instance...
     * <p/>
     * For BLOBs, the internal value might be changed by:
     * {@link java.sql.Blob#setBinaryStream},
     * {@link java.sql.Blob#setBytes(long, byte[])},
     * {@link java.sql.Blob#setBytes(long, byte[], int, int)},
     * or {@link java.sql.Blob#truncate(long)}.
     * <p/>
     * For CLOBs, the internal value might be changed by:
     * {@link java.sql.Clob#setAsciiStream(long)},
     * {@link java.sql.Clob#setCharacterStream(long)},
     * {@link java.sql.Clob#setString(long, String)},
     * {@link java.sql.Clob#setString(long, String, int, int)},
     * or {@link java.sql.Clob#truncate(long)}.
     * <p/>
     * NOTE : I do not know the correct answer currently for
     * databases which (1) are not part of the cruise control process
     * or (2) do not {@link #supportsExpectedLobUsagePattern}.
     *
     * @return True if the changes are propogated back to the
     * database; false otherwise.
     * @since 3.2
     */
    public boolean supportsLobValueChangePropogation() {
        return true;
    }

    /**
     * Is it supported to materialize a LOB locator outside the transaction in
     * which it was created?
     * <p/>
     * Again, part of the trickiness here is the fact that this is largely
     * driver dependent.
     * <p/>
     * NOTE: all database I have tested which {@link #supportsExpectedLobUsagePattern()}
     * also support the ability to materialize a LOB outside the owning transaction...
     *
     * @return True if unbounded materialization is supported; false otherwise.
     * @since 3.2
     */
    public boolean supportsUnboundedLobLocatorMaterialization() {
        return true;
    }

    /**
     * Does this dialect support referencing the table being mutated in
     * a subquery.  The "table being mutated" is the table referenced in
     * an UPDATE or a DELETE query.  And so can that table then be
     * referenced in a subquery of said UPDATE/DELETE query.
     * <p/>
     * For example, would the following two syntaxes be supported:<ul>
     * <li>delete from TABLE_A where ID not in ( select ID from TABLE_A )</li>
     * <li>update TABLE_A set NON_ID = 'something' where ID in ( select ID from TABLE_A)</li>
     * </ul>
     *
     * @return True if this dialect allows references the mutating table from
     * a subquery.
     * @since 3.2
     */
    public boolean supportsSubqueryOnMutatingTable() {
        return true;
    }

    /**
     * Does the dialect support an exists statement in the select clause?
     *
     * @return True if exists checks are allowed in the select clause; false otherwise.
     */
    public boolean supportsExistsInSelect() {
        return true;
    }

    /**
     * For the underlying database, is READ_COMMITTED isolation implemented by
     * forcing readers to wait for write locks to be released?
     *
     * @return True if writers block readers to achieve READ_COMMITTED; false otherwise.
     */
    public boolean doesReadCommittedCauseWritersToBlockReaders() {
        return false;
    }

    /**
     * For the underlying database, is REPEATABLE_READ isolation implemented by
     * forcing writers to wait for read locks to be released?
     *
     * @return True if readers block writers to achieve REPEATABLE_READ; false otherwise.
     */
    public boolean doesRepeatableReadCauseReadersToBlockWriters() {
        return false;
    }

    /**
     * Does this dialect support using a JDBC bind parameter as an argument
     * to a function or procedure call?
     *
     * @return True if the database supports accepting bind params as args; false otherwise.
     */
    public boolean supportsBindAsCallableArgument() {
        return true;
    }
}