Java tutorial
/* * #%L * gitools-core * %% * Copyright (C) 2013 Universitat Pompeu Fabra - Biomedical Genomics group * %% * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program. If not, see * <http://www.gnu.org/licenses/gpl-3.0.html>. * #L% */ package org.gitools.analysis.stats.test; import com.google.common.collect.Lists; import org.apache.commons.math3.distribution.NormalDistribution; import org.apache.commons.math3.util.FastMath; import org.gitools.analysis.stats.calc.Statistic; import org.gitools.analysis.stats.test.results.CommonResult; import org.gitools.analysis.stats.test.results.ZScoreResult; import java.util.List; import java.util.NoSuchElementException; import java.util.Random; import static com.google.common.base.Predicates.notNull; import static com.google.common.collect.Iterables.*; public class ZscoreTest extends AbstractEnrichmentTest { private final Statistic statCalc; private Random random; private List<Double> population; private final int numSamples; public ZscoreTest(int numSamples, Statistic statCalc) { super("zscore-" + statCalc.getName(), ZScoreResult.class); this.statCalc = statCalc; this.numSamples = numSamples; } @Override public void processPopulation(Iterable<Double> population) { Double seed; try { seed = find(population, notNull()); } catch (NoSuchElementException e) { seed = 1.0; } this.random = new Random(seed.longValue()); this.population = Lists.newArrayList(filter(population, notNull())); } private static NormalDistribution NORMAL = new NormalDistribution(); @Override public CommonResult processTest(Iterable<Double> values) { Double observed = statCalc.calc(values); if (observed == null) { return null; } int n = size(filter(values, notNull())); double sx = 0, sx2 = 0; for (int i = 0; i < numSamples; i++) { double xi = statCalc.calc(randomSample(population, n)); sx += xi; sx2 += (xi * xi); } double N = numSamples; double mean = sx / N; double stdev = FastMath.sqrt((N * sx2) - (sx * sx)) / N; double zscore = (observed - mean) / stdev; double leftPvalue = NORMAL.cumulativeProbability(zscore); double rightPvalue = 1.0 - leftPvalue; double twoTailPvalue = (zscore <= 0 ? leftPvalue : rightPvalue) * 2; twoTailPvalue = twoTailPvalue > 1.0 ? 1.0 : twoTailPvalue; return new ZScoreResult(n, leftPvalue, rightPvalue, twoTailPvalue, observed, mean, stdev, zscore); } public List<Double> randomSample(List<Double> items, int m) { for (int i = 0; i < m; i++) { int pos = i + random.nextInt(items.size() - i); Double tmp = items.get(pos); items.set(pos, items.get(i)); items.set(i, tmp); } return items.subList(0, m); } }