org.evosuite.ga.metaheuristics.SPEA2.java Source code

Java tutorial

Introduction

Here is the source code for org.evosuite.ga.metaheuristics.SPEA2.java

Source

/**
 * Copyright (C) 2010-2016 Gordon Fraser, Andrea Arcuri and EvoSuite
 * contributors
 *
 * This file is part of EvoSuite.
 *
 * EvoSuite is free software: you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3.0 of the License, or
 * (at your option) any later version.
 *
 * EvoSuite is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EvoSuite. If not, see <http://www.gnu.org/licenses/>.
 */
package org.evosuite.ga.metaheuristics;

import org.apache.commons.lang3.tuple.Pair;
import org.evosuite.Properties;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.ConstructionFailedException;
import org.evosuite.ga.FitnessFunction;
import org.evosuite.ga.comparators.DominanceComparator;
import org.evosuite.ga.comparators.StrengthFitnessComparator;
import org.evosuite.utils.Randomness;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;

/**
 * SPEA2 implementation.
 * 
 * @techreport{ZLT:2001,
        author = {E. Zitzler and M. Laumanns and L. Thiele},
        title = {{SPEA2: Improving the Strength Pareto Evolutionary Algorithm}},
        institution = {Computer Engineering and Networks Laboratory (TIK), Swiss Federal
        Institute of Technology (ETH), Zurich, Switzerland},
        year = {2001},
        number = {103}}
 *
 * @author Jos Campos
 */
public class SPEA2<T extends Chromosome> extends GeneticAlgorithm<T> {

    private static final long serialVersionUID = -7638497183625040479L;

    private static final Logger logger = LoggerFactory.getLogger(SPEA2.class);

    private DominanceComparator comparator;

    // TODO should we use 'archive' from GeneticAlgorithm class?
    private List<T> archive = null;

    public SPEA2(ChromosomeFactory<T> factory) {
        super(factory);
        this.comparator = new DominanceComparator();
    }

    @SuppressWarnings("unchecked")
    @Override
    protected void evolve() {
        /*
         * Reproduction
         */

        List<T> offspringPopulation = new ArrayList<T>(Properties.POPULATION);
        while (offspringPopulation.size() < Properties.POPULATION) {
            // TODO SelectionFunction has to be a BinaryTournamentSelection, i.e.,
            // a TournamenteSelection with 2 tournaments
            // TODO we might want to use BinaryTournamentSelectionCrowdedComparison
            T parent1 = this.selectionFunction.select(this.archive);
            T parent2 = this.selectionFunction.select(this.archive);

            T offspring1 = (T) parent1.clone();
            T offspring2 = (T) parent2.clone();

            if (Randomness.nextDouble() <= Properties.CROSSOVER_RATE) {
                try {
                    this.crossoverFunction.crossOver(offspring1, offspring2);
                } catch (ConstructionFailedException e) {
                    logger.error("Crossover failed: " + e.getMessage());
                    e.printStackTrace();
                }
            }

            if (Randomness.nextDouble() <= Properties.MUTATION_RATE) {
                this.notifyMutation(offspring1);
                offspring1.mutate();
                this.notifyMutation(offspring2);
                offspring2.mutate();
            }

            offspringPopulation.add(offspring1);
            offspringPopulation.add(offspring2);
        }

        /*
         * Evaluation
         */

        for (T element : offspringPopulation) {
            for (final FitnessFunction<T> ff : this.getFitnessFunctions()) {
                ff.getFitness(element);
                notifyEvaluation(element);
            }
        }

        /*
         * Replacement
         */

        this.population.clear();
        this.population.addAll(offspringPopulation);

        this.currentIteration++;
    }

    @Override
    public void initializePopulation() {
        this.notifySearchStarted();
        this.currentIteration = 0;

        // Generate an initial population P0
        this.generateInitialPopulation(Properties.POPULATION);
        // and create an empty archive of the same size
        this.archive = new ArrayList<T>(Properties.POPULATION);

        for (T element : this.population) {
            for (final FitnessFunction<T> ff : this.getFitnessFunctions()) {
                ff.getFitness(element);
                notifyEvaluation(element);
            }
        }
        this.updateArchive();
        this.writeIndividuals(this.archive);

        this.notifyIteration();
    }

    @Override
    public void generateSolution() {
        if (this.population.isEmpty()) {
            this.initializePopulation();
        }

        while (!isFinished()) {
            this.evolve();
            this.updateArchive();
            this.notifyIteration();
            this.writeIndividuals(this.archive);
        }

        // replace population object with archive, so that when 'getBestIndividuals()'
        // function is called, the correct list of solutions is returned
        this.population = this.archive;

        this.notifySearchFinished();
    }

    private void updateArchive() {
        List<T> union = new ArrayList<T>(2 * Properties.POPULATION);
        union.addAll(population);
        union.addAll(this.archive);
        this.computeStrength(union);
        this.archive = this.environmentalSelection(union);
    }

    /**
     * 
     * @param population
     * @return
     */
    protected List<T> environmentalSelection(List<T> union) {

        List<T> populationCopy = new ArrayList<T>(union.size());
        populationCopy.addAll(union);

        // First step is to copy all nondominated individuals, i.e., those
        // which have a fitness lower than one, from archive and population
        // to the archive of the next generation
        List<T> tmpPopulation = new ArrayList<T>(populationCopy.size());
        Iterator<T> it = populationCopy.iterator();
        while (it.hasNext()) {
            T individual = it.next();
            if (individual.getDistance() < 1.0) {
                tmpPopulation.add(individual);
                it.remove();
            }
        }

        // If the nondominated front fits exactly into the archive, the environmental
        // selection step is completed
        if (tmpPopulation.size() == Properties.POPULATION) {
            return tmpPopulation;
        }
        // If archive is too small, the best dominated individuals in the previous
        // archive and population are copied to the new archive
        else if (tmpPopulation.size() < Properties.POPULATION) {
            Collections.sort(populationCopy, new StrengthFitnessComparator());
            int remain = (union.size() < Properties.POPULATION ? union.size() : Properties.POPULATION)
                    - tmpPopulation.size();
            for (int i = 0; i < remain; i++) {
                tmpPopulation.add(populationCopy.get(i));
            }

            return tmpPopulation;
        }

        // when the size of the current nondominated (multi)set exceeds the archive size,
        // an archive truncation procedure is invoked which iteratively removes individuals
        // from the new front until if fits exactly into the archive. the individual which
        // has the minimum distance to another individual is chosen at each stage; if there
        // are several individuals with minimum distance the tie is broken by considering the
        // second smallest distances and so forth.

        double[][] distance = this.euclideanDistanceMatrix(tmpPopulation);

        List<List<Pair<Integer, Double>>> distanceList = new LinkedList<List<Pair<Integer, Double>>>();
        for (int i = 0; i < tmpPopulation.size(); i++) {
            List<Pair<Integer, Double>> distanceNodeList = new LinkedList<Pair<Integer, Double>>();

            for (int j = 0; j < tmpPopulation.size(); j++) {
                if (i != j) {
                    distanceNodeList.add(Pair.of(j, distance[i][j]));
                }
            }

            // sort by distance so that later we can just get the first element, i.e.,
            // the one with the smallest distance
            Collections.sort(distanceNodeList, new Comparator<Pair<Integer, Double>>() {
                @Override
                public int compare(Pair<Integer, Double> pair1, Pair<Integer, Double> pair2) {
                    if (pair1.getRight() < pair2.getRight()) {
                        return -1;
                    } else if (pair1.getRight() > pair2.getRight()) {
                        return 1;
                    } else {
                        return 0;
                    }
                }
            });

            distanceList.add(distanceNodeList);
        }

        while (tmpPopulation.size() > Properties.POPULATION) {
            double minDistance = Double.POSITIVE_INFINITY;
            int minimumIndex = -1;

            for (int i = 0; i < distanceList.size(); i++) {
                List<Pair<Integer, Double>> distances = distanceList.get(i);
                Pair<Integer, Double> point = distances.get(0);

                // as this list is sorted, we just need to get the first element of it.
                if (point.getRight() < minDistance) {
                    minDistance = point.getRight();
                    minimumIndex = i;
                } else if (point.getRight() == minDistance) {
                    // as there is a tie, the th smallest distances as to to be searched for

                    // find the k-th smallest distance that is not equal to the one just
                    // selected. i.e., go through all distances and skip the ones that
                    // are equal.
                    for (int k = 0; k < distances.size(); k++) {
                        double kdist1 = distances.get(k).getRight();
                        double kdist2 = distanceList.get(minimumIndex).get(k).getRight();

                        if (kdist1 == kdist2) {
                            continue;
                        } else if (kdist1 < kdist2) {
                            minimumIndex = i;
                        }

                        break;
                    }
                }
            }

            assert minimumIndex != -1;

            // remove the solution with the smallest distance
            tmpPopulation.remove(minimumIndex);
            distanceList.remove(minimumIndex);

            // remove from the neighbours' list of neighbours, the one we just removed
            for (List<Pair<Integer, Double>> distances : distanceList) {
                ListIterator<Pair<Integer, Double>> iterator = distances.listIterator();
                while (iterator.hasNext()) {
                    if (iterator.next().getLeft() == minimumIndex) {
                        iterator.remove();
                        // TODO can we break the loop? is there any chance that 'distances'
                        // has repeated elements?!
                    }
                }
            }
        }

        return tmpPopulation;
    }

    /**
     * 
     * @param solutions
     */
    protected void computeStrength(List<T> solution) {
        // count the number of individuals each solution dominates
        int[] strength = new int[solution.size()];
        for (int i = 0; i < solution.size() - 1; i++) {
            for (int j = i + 1; j < solution.size(); j++) {
                int comparison = this.comparator.compare(solution.get(i), solution.get(j));
                if (comparison < 0) {
                    strength[i]++;
                } else if (comparison > 0) {
                    strength[j]++;
                }
            }
        }

        // the raw fitness is the sum of the dominance counts (strength)
        // of all dominated solutions
        double[] rawFitness = new double[solution.size()];
        for (int i = 0; i < solution.size() - 1; i++) {
            for (int j = i + 1; j < solution.size(); j++) {
                int comparison = this.comparator.compare(solution.get(i), solution.get(j));
                if (comparison > 0) {
                    rawFitness[i] += strength[j];
                } else if (comparison < 0) {
                    rawFitness[j] += strength[i];
                }
            }
        }

        // Add the distance to the k-th individual. In the reference paper of SPEA2,
        // k = sqrt(population.size()), but a value of k = 1 is recommended. See
        // http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2_documentation.txt

        double[][] distance = this.euclideanDistanceMatrix(solution);
        int k = 1;
        for (int i = 0; i < distance.length; i++) {
            Arrays.sort(distance[i]);
            double kDistance = 1.0 / (distance[i][k] + 2.0);
            // TODO for now let's use 'distance' field, however the right
            // name should be 'strength' or 'fitness-strength'
            solution.get(i).setDistance(rawFitness[i] + kDistance);
        }
    }

    /**
     * Returns a matrix with the euclidean distance between each pair of solutions in the population.
     * 
     * @param solution
     * @return
     */
    protected double[][] euclideanDistanceMatrix(List<T> solution) {
        double[][] distance = new double[solution.size()][solution.size()];

        for (int i = 0; i < solution.size(); i++) {
            distance[i][i] = 0.0;
            for (int j = i + 1; j < solution.size(); j++) {
                distance[i][j] = this.distanceBetweenObjectives(solution.get(i), solution.get(j));
                distance[j][i] = distance[i][j];
            }
        }

        return distance;
    }

    /**
     * Returns the euclidean distance between a pair of solutions in the objective space.
     * 
     * @param t1
     * @param t2
     * @return
     */
    protected double distanceBetweenObjectives(T t1, T t2) {
        double distance = 0.0;

        // perform euclidean distance
        for (FitnessFunction<?> ff : t1.getFitnessValues().keySet()) {
            double diff = t1.getFitness(ff) - t2.getFitness(ff);
            distance += Math.pow(diff, 2.0);
        }

        return Math.sqrt(distance);
    }
}