Java tutorial
/* * Copyright (C) 2013 by Array Systems Computing Inc. http://www.array.ca * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see http://www.gnu.org/licenses/ */ package org.esa.nest.util; import Jama.Matrix; import org.apache.commons.math.util.FastMath; import org.esa.nest.datamodel.PosVector; import org.esa.nest.eo.Constants; public final class MathUtils { private MathUtils() { } /** * Perform linear interpolation. * @param y0 First sample value. * @param y1 Second sample value. * @param mu A perameter in range [0,1] that defines the interpolated sample position between y0 and y1. * A 0 value of mu corresponds to sample y0. * @return The interpolated sample value. */ public static double interpolationLinear(final double y0, final double y1, final double mu) { return (1 - mu) * y0 + mu * y1; } /** * Perform cubic interpolation. * @param y0 First sample value. * @param y1 Second sample value. * @param y2 Third sample value. * @param y3 Forth sample value. * @param mu A perameter in range [0,1] that defines the interpolated sample position between y1 and y2. * A 0 value of mu corresponds to sample y1. * @return The interpolated sample value. */ public static double interpolationCubic(final double y0, final double y1, final double y2, final double y3, final double mu) { final double mu2 = mu * mu; final double a0 = -0.5 * y0 + 1.5 * y1 - 1.5 * y2 + 0.5 * y3; final double a1 = y0 - 2.5 * y1 + 2 * y2 - 0.5 * y3; final double a2 = -0.5 * y0 + 0.5 * y2; return (a0 * mu * mu2 + a1 * mu2 + a2 * mu + y1); } /** * Perform cubic2 interpolation. * @param y0 First sample value. * @param y1 Second sample value. * @param y2 Third sample value. * @param y3 Forth sample value. * @param mu A perameter in range [0,1] that defines the interpolated sample position between y1 and y2. * A 0 value of mu corresponds to sample y1. * @return The interpolated sample value. */ public static double interpolationCubic2(final double y0, final double y1, final double y2, final double y3, final double mu) { final double mu2 = mu * mu; final double a0 = y3 - y2 - y0 + y1; final double a1 = y0 - y1 - a0; final double a2 = y2 - y0; return (a0 * mu * mu2 + a1 * mu2 + a2 * mu + y1); } /** * Perform sinc interpolation. * @param y0 First sample value. * @param y1 Second sample value. * @param y2 Third sample value. * @param y3 Forth sample value. * @param y4 Fifth sample value. * @param mu A perameter in range [-0.5, 0.5] that defines the interpolated sample position wrt y2. * A 0 value of mu corresponds to sample y2. * @return The interpolated sample value. */ public static double interpolationSinc(final double y0, final double y1, final double y2, final double y3, final double y4, final double mu) { final int filterLength = 5; final double f0 = sinc(mu + 2.0) * hanning(mu + 2.0, filterLength); final double f1 = sinc(mu + 1.0) * hanning(mu + 1.0, filterLength); final double f2 = sinc(mu + 0.0) * hanning(mu + 0.0, filterLength); final double f3 = sinc(mu - 1.0) * hanning(mu - 1.0, filterLength); final double f4 = sinc(mu - 2.0) * hanning(mu - 2.0, filterLength); double sum = f0 + f1 + f2 + f3 + f4; return (f0 * y0 + f1 * y1 + f2 * y2 + f3 * y3 + f4 * y4) / sum; } /** * Perform Bi-linear interpolation. * @param v00 Sample value for pixel at (x0, y0). * @param v01 Sample value for pixel at (x1, y0). * @param v10 Sample value for pixel at (x0, y1). * @param v11 Sample value for pixel at (x1, y1). * @param muX A perameter in range [0,1] that defines the interpolated sample position between x0 and x1. * A 0 value of muX corresponds to sample x0. * @param muY A perameter in range [0,1] that defines the interpolated sample position between y0 and y1. * A 0 value of muY corresponds to sample y0. * @return The interpolated sample value. */ public static double interpolationBiLinear(final double v00, final double v01, final double v10, final double v11, final double muX, final double muY) { //return interpolationLinear(interpolationLinear(v00, v01, muX), interpolationLinear(v10, v11, muX), muY); return (1 - muY) * ((1 - muX) * v00 + muX * v01) + muY * ((1 - muX) * v10 + muX * v11); } /** * Perform Bi-cubic interpolation. * @param v Array of 4x4 sample values with vij is the value for pixel at (xj, yi) where i,j = 0,1,2,3. * @param muX A perameter in range [0,1] that defines the interpolated sample position between x1 and x2. * A 0 value of muX corresponds to sample x1. * @param muY A perameter in range [0,1] that defines the interpolated sample position between y1 and y2. * A 0 value of muY corresponds to sample y1. * @return The interpolated sample value. */ public static double interpolationBiCubic(final double[][] v, final double muX, final double muY) { //if (v.length != 4 || v[0].length != 4 || v[1].length != 4 || v[2].length != 4 || v[3].length != 4) { // throw new OperatorException("Incorrect sample array length"); //} return interpolationCubic(interpolationCubic(v[0][0], v[0][1], v[0][2], v[0][3], muX), interpolationCubic(v[1][0], v[1][1], v[1][2], v[1][3], muX), interpolationCubic(v[2][0], v[2][1], v[2][2], v[2][3], muX), interpolationCubic(v[3][0], v[3][1], v[3][2], v[3][3], muX), muY); } /** * Perform Bi-cubic2 interpolation. * @param v Array of 4x4 sample values with vij is the value for pixel at (xj, yi) where i,j = 0,1,2,3. * @param muX A perameter in range [0,1] that defines the interpolated sample position between x1 and x2. * A 0 value of muX corresponds to sample x1. * @param muY A perameter in range [0,1] that defines the interpolated sample position between y1 and y2. * A 0 value of muY corresponds to sample y1. * @return The interpolated sample value. */ public static double interpolationBiCubic2(final double[][] v, final double muX, final double muY) { //if (v.length != 4 || v[0].length != 4 || v[1].length != 4 || v[2].length != 4 || v[3].length != 4) { // throw new OperatorException("Incorrect sample array length"); //} return interpolationCubic2(interpolationCubic2(v[0][0], v[0][1], v[0][2], v[0][3], muX), interpolationCubic2(v[1][0], v[1][1], v[1][2], v[1][3], muX), interpolationCubic2(v[2][0], v[2][1], v[2][2], v[2][3], muX), interpolationCubic2(v[3][0], v[3][1], v[3][2], v[3][3], muX), muY); } /** * Perform Bi-sinc interpolation. * @param v Array of 5x5 sample values with vij is the value for pixel at (xj, yi) where i,j = 0,1,2,3,4. * @param muX A perameter in range [-0.5, 0.5] that defines the interpolated sample position wrt x2. * A 0 value of mu corresponds to sample x2. * @param muY A perameter in range [-0.5, 0.5] that defines the interpolated sample position wrt y2. * A 0 value of mu corresponds to sample y2. * @return The interpolated sample value. */ public static double interpolationBiSinc(final double[][] v, final double muX, final double muY) { //if (v.length != 5 || // v[0].length != 5 || v[1].length != 5 || v[2].length != 5 || v[3].length != 5 || v[4].length != 5) { // throw new OperatorException("Incorrect sample array length"); //} final double tmpV0 = interpolationSinc(v[0][0], v[0][1], v[0][2], v[0][3], v[0][4], muX); final double tmpV1 = interpolationSinc(v[1][0], v[1][1], v[1][2], v[1][3], v[1][4], muX); final double tmpV2 = interpolationSinc(v[2][0], v[2][1], v[2][2], v[2][3], v[2][4], muX); final double tmpV3 = interpolationSinc(v[3][0], v[3][1], v[3][2], v[3][3], v[3][4], muX); final double tmpV4 = interpolationSinc(v[4][0], v[4][1], v[4][2], v[4][3], v[4][4], muX); return interpolationSinc(tmpV0, tmpV1, tmpV2, tmpV3, tmpV4, muY); } /** * Precalculate weight for Lagrange polynomial based interpolation. * @param pos Position array. * @param desiredPos Desired position. * @return The array of the weights. */ public static double[] lagrangeWeight(final double pos[], final double desiredPos) { final int length = pos.length; if (desiredPos < pos[0] || desiredPos > pos[length - 1]) { double time = desiredPos - (int) desiredPos; final double[] timeArray = new double[length]; for (int i = 0; i < length; i++) { timeArray[i] = pos[i] - (int) pos[i]; } return computeWeight(timeArray, time); } else { return computeWeight(pos, desiredPos); } } private static double[] computeWeight(final double pos[], final double desiredPos) { final int length = pos.length; final double[] weight = new double[length]; for (int i = 0; i < length; ++i) { double weightVal = 1; for (int j = 0; j < length; ++j) { if (j != i) { weightVal *= (desiredPos - pos[j]) / (pos[i] - pos[j]); } } weight[i] = weightVal; } return weight; } /** * Perform Lagrange polynomial based interpolation. * @param xVal Sample value array. * @param yVal Sample value array. * @param zVal Sample value array. * @param weight the weights. */ public static void lagrangeInterpolatingPolynomial(final double xVal[], final double yVal[], final double zVal[], final double[] weight, final PosVector vector) { vector.x = 0; vector.y = 0; vector.z = 0; for (int i = 0; i < xVal.length; ++i) { vector.x += weight[i] * xVal[i]; vector.y += weight[i] * yVal[i]; vector.z += weight[i] * zVal[i]; } } /** * Perform Lagrange polynomial based interpolation. * @param pos Position array. * @param val Sample value array. * @param desiredPos Desired position. * @return The interpolated sample value. */ public static double lagrangeInterpolatingPolynomial(final double pos[], final double val[], final double desiredPos) { double retVal = 0; final int length = pos.length; for (int i = 0; i < length; ++i) { double weight = 1; for (int j = 0; j < length; ++j) { if (j != i) { weight *= (desiredPos - pos[j]) / (pos[i] - pos[j]); } } retVal += weight * val[i]; } return retVal; } /** * Interpolate vector using 8th order Legendre interpolation. * * <p>The method interpolates a n-dimensional vector, at desired point given as input an equidistant * n-dimensional vectors.</p> * * <p><b>Notes:</b> Coefficients for 8th order interpolation are pre-computed. Method is primarily designed for * interpolating orbits, and it should be used with care in other applications, although it should work anywhere.</p> * * <p><b>Implementation details:</b> Adapted from 'getorb' package.</p> * * @param samples Sample value array. * @param x Desired position. * @return The interpolated sample value. * * @author Petar Marinkovic, PPO.labs */ public static double lagrangeEightOrderInterpolation(double[] samples, double x) { double out = 0.0d; final double[] denominators = { 40320, -5040, 1440, -720, 576, -720, 1440, -5040, 40320 }; final double numerator = x * (x - 1) * (x - 2) * (x - 3) * (x - 4) * (x - 5) * (x - 6) * (x - 7) * (x - 8); if (numerator == 0) { return samples[(int) Math.round(x)]; } double coeff; for (int i = 0; i < samples.length; i++) { coeff = numerator / denominators[i] / (x - i); out += coeff * samples[i]; } return out; } /** * Get Vandermonde matrix constructed from a given array. * @param d The given range distance array. * @param warpPolynomialOrder The warp polynomial order. * @return The Vandermonde matrix. */ public static Matrix createVandermondeMatrix(final double[] d, final int warpPolynomialOrder) { final int n = d.length; final double[][] array = new double[n][warpPolynomialOrder + 1]; for (int i = 0; i < n; i++) { for (int j = 0; j <= warpPolynomialOrder; j++) { array[i][j] = Math.pow(d[i], (double) j); } } return new Matrix(array); } /** * The sinc function. * @param x The input variable. * @return The sinc function value. */ private static double sinc(final double x) { if (Double.compare(x, 0.0) == 0) { return 1.0; } else { return FastMath.sin(x * Math.PI) / (x * Math.PI); } } /** * The Hanning window. * @param x The input variable. * @param windowLength The window length. * @return The Hanning window value. */ public static double hanning(final double x, final int windowLength) { if (x >= -0.5 * windowLength && x <= 0.5 * windowLength) { return 0.5 * (1.0 + FastMath.cos(Constants.TWO_PI * x / (windowLength + 1))); } else { return 0.0; } } /** * Compute polynomial value. Given variable x and polynomial coefficients c[0], c[1], ..., c[n], this * function returns f(x) = c[0] + c[1]*x + ... + c[n]*x^n. * @param x The variable. * @param coeff The polynomial coefficients. * @return The function value. */ public static double computePolynomialValue(final double x, final double[] coeff) { double v = 0.0; for (int i = coeff.length - 1; i > 0; i--) { v = (v + coeff[i]) * x; } return v + coeff[0]; } public static void normalizeVector(final double[] v) { final double norm = Math.sqrt(innerProduct(v, v)); v[0] /= norm; v[1] /= norm; v[2] /= norm; } public static double innerProduct(final double[] a, final double[] b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } }