Java tutorial
/******************************************************************************* * Copyright (c) 2012 Michael Kutschke. All rights reserved. This program and the accompanying materials are made * available under the terms of the Eclipse Public License v1.0 which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: Michael Kutschke - initial API and implementation ******************************************************************************/ package org.eclipse.recommenders.jayes.transformation; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.PriorityQueue; import org.apache.commons.math.optimization.GoalType; import org.apache.commons.math.optimization.OptimizationException; import org.apache.commons.math.optimization.RealPointValuePair; import org.apache.commons.math.optimization.linear.LinearConstraint; import org.apache.commons.math.optimization.linear.LinearObjectiveFunction; import org.apache.commons.math.optimization.linear.Relationship; import org.apache.commons.math.optimization.linear.SimplexSolver; import org.eclipse.recommenders.jayes.factor.AbstractFactor; import org.eclipse.recommenders.jayes.transformation.util.CanonicalDoubleArrayManager; import org.eclipse.recommenders.jayes.transformation.util.DecompositionFailedException; import com.google.common.base.Functions; import com.google.common.collect.Lists; import com.google.common.collect.Ordering; /** * To be used when a conditional probability density consists of mostly the same few distributions, which is often the * case when a deterministic distribution is smoothed. <br/> * * <pre> * Example: * { * { 0.99 0.01 } * { 0.01 0.99 } * { 0.01 0.99 } * } * * would decompose to the new basis * * { * { 0.01 0.99 } * { 0.99 0.01 } * } * * and * { * { 0 1 } * { 1 0 } * { 1 0 } * } * </pre> * * <br/> * The decomposition is still applicable when there are some parts of the distribution that can not be directly * expressed by one of the basis vectors. In that case, that particular distribution will be represented as non-negative * linear combination of the basis vectors. Note that because of that, it is possible that the decomposition fails. * */ public class LatentDeterministicDecomposition extends AbstractDecomposition { @Override protected List<double[]> getBasis(AbstractFactor f, List<double[]> vectors) throws DecompositionFailedException { Map<double[], Integer> counts = count(vectors); List<double[]> basis = getBest(counts, f.getValues().length() / vectors.size(), vectors.size() / 2); if (basis == null) throw new DecompositionFailedException("Could not find a good enough basis"); return basis; } private Map<double[], Integer> count(List<double[]> vectors) { Map<double[], Integer> counts = new HashMap<double[], Integer>(); for (double[] vector : Lists.transform(vectors, new CanonicalDoubleArrayManager())) { if (!counts.containsKey(vector)) { counts.put(vector, 0); } counts.put(vector, counts.get(vector) + 1); } return counts; } private List<double[]> getBest(final Map<double[], Integer> counts, int basisSize, int minTotalCounts) { PriorityQueue<double[]> q = new PriorityQueue<double[]>(basisSize, Ordering.natural().onResultOf(Functions.forMap(counts))); for (Entry<double[], Integer> e : counts.entrySet()) { if (q.isEmpty() || q.size() < basisSize) { q.add(e.getKey()); } else { double[] head = q.peek(); if (counts.get(head) < counts.get(e.getKey())) { q.remove(); q.add(e.getKey()); } } } int totalcounts = 0; for (double[] v : q) { totalcounts += counts.get(v); } if (totalcounts < minTotalCounts) return null; return new ArrayList<double[]>(q); } @Override protected double[] toLatentSpace(double[] v, List<double[]> basis) throws DecompositionFailedException { // we can assume here that equals works, we canonized everything before! int ind = basis.indexOf(v); if (ind != -1) { double[] l = new double[v.length]; l[ind] = 1; return l; } // have to figure out a suitable non-negative linear combination of the base vectors // -> use simplex List<double[]> transposedBasis = transpose(basis); List<LinearConstraint> constraints = new ArrayList<LinearConstraint>(); for (int i = 0; i < v.length; i++) { LinearConstraint c = new LinearConstraint(transposedBasis.get(i), Relationship.EQ, v[i]); constraints.add(c); } LinearObjectiveFunction obj = new LinearObjectiveFunction(new double[v.length], 0); RealPointValuePair result; try { result = new SimplexSolver().optimize(obj, constraints, GoalType.MINIMIZE, true); } catch (OptimizationException e) { throw new DecompositionFailedException(e); } return result.getPoint(); } }