org.drugis.mtc.graph.MinimumDiameterSpanningTree.java Source code

Java tutorial

Introduction

Here is the source code for org.drugis.mtc.graph.MinimumDiameterSpanningTree.java

Source

/*
 * This file is part of the GeMTC software for MTC model generation and
 * analysis. GeMTC is distributed from http://drugis.org/gemtc.
 * Copyright (C) 2009-2012 Gert van Valkenhoef.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

package org.drugis.mtc.graph;

import java.util.ArrayList;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;

import org.apache.commons.collections15.Transformer;

import edu.uci.ics.jung.algorithms.shortestpath.DijkstraShortestPath;
import edu.uci.ics.jung.algorithms.shortestpath.Distance;
import edu.uci.ics.jung.algorithms.shortestpath.ShortestPath;
import edu.uci.ics.jung.graph.DelegateTree;
import edu.uci.ics.jung.graph.Tree;
import edu.uci.ics.jung.graph.UndirectedGraph;

public class MinimumDiameterSpanningTree<V, E> {
    private final UndirectedGraph<V, E> d_graph;
    private final Transformer<E, Number> d_edgeLength;
    private final Distance<V> d_distance;
    private final ShortestPath<V, E> d_shortestPath;
    private final Comparator<V> d_vertexComparator;

    /**
     * Minimum diameter spanning tree of a unweighted graph.
     */
    public MinimumDiameterSpanningTree(final UndirectedGraph<V, E> graph) {
        this(graph, new AbsoluteOneCenter.UnitLength<E>(), new DijkstraShortestPath<V, E>(graph));
    }

    /**
     * Minimum diameter spanning tree of a unweighted graph.
     */
    public MinimumDiameterSpanningTree(final UndirectedGraph<V, E> graph, Comparator<V> vertexComparator) {
        this(graph, new AbsoluteOneCenter.UnitLength<E>(), new DijkstraShortestPath<V, E>(graph), vertexComparator);
    }

    /**
     * Minimum diameter spanning tree of a weighted graph.
     */
    public MinimumDiameterSpanningTree(final UndirectedGraph<V, E> graph, final Transformer<E, Number> edgeLength) {
        this(graph, edgeLength, new DijkstraShortestPath<V, E>(graph, edgeLength));
    }

    /**
     * Minimum diameter spanning tree of a weighted graph.
     */
    public MinimumDiameterSpanningTree(final UndirectedGraph<V, E> graph, final Transformer<E, Number> edgeLength,
            final DijkstraShortestPath<V, E> shortestPath) {
        this(graph, edgeLength, shortestPath, shortestPath);
    }

    /**
     * Minimum diameter spanning tree of a weighted graph.
     */
    public MinimumDiameterSpanningTree(final UndirectedGraph<V, E> graph, final Transformer<E, Number> edgeLength,
            final DijkstraShortestPath<V, E> shortestPath, final Comparator<V> vertexComparator) {
        this(graph, edgeLength, shortestPath, shortestPath, vertexComparator);
    }

    /**
     * Minimum diameter spanning tree of a weighted graph.
     */
    public MinimumDiameterSpanningTree(final UndirectedGraph<V, E> graph, final Transformer<E, Number> edgeLength,
            final Distance<V> distance, final ShortestPath<V, E> shortestPath) {
        this(graph, edgeLength, distance, shortestPath, null);
    }

    /**
     * Minimum diameter spanning tree of a weighted graph.
     */
    public MinimumDiameterSpanningTree(final UndirectedGraph<V, E> graph, final Transformer<E, Number> edgeLength,
            final Distance<V> distance, final ShortestPath<V, E> shortestPath, Comparator<V> vertexComparator) {
        d_graph = graph;
        d_edgeLength = edgeLength;
        d_distance = distance;
        d_shortestPath = shortestPath;
        d_vertexComparator = vertexComparator;
    }

    public Tree<V, E> getMinimumDiameterSpanningTree() {
        PointOnEdge<V, E> center = new AbsoluteOneCenter<V, E>(d_graph, d_edgeLength, d_distance,
                d_vertexComparator).getCenter();
        DelegateTree<V, E> tree = new DelegateTree<V, E>();

        // add the center edge
        // choose the one closest to the absolute one center, or the "first"
        // vertex according to the comparator if they are equally close.
        double dc = center.getDistance() - 0.5 * l(center.getEdge());
        int vc = d_vertexComparator == null ? 0
                : d_vertexComparator.compare(center.getVertex0(), center.getVertex1());
        if (dc < 0.0 || (dc == 0.0 && vc <= 0)) {
            tree.setRoot(center.getVertex0());
            tree.addChild(center.getEdge(), center.getVertex0(), center.getVertex1());
        } else {
            tree.setRoot(center.getVertex1());
            tree.addChild(center.getEdge(), center.getVertex1(), center.getVertex0());
        }

        // add remaining edges based on shortest paths
        for (V v : d_graph.getVertices()) {
            if (v.equals(center.getVertex0()) || v.equals(center.getVertex1())) {
                continue;
            }
            double d0 = d_distance.getDistance(center.getVertex0(), v).doubleValue();
            double d1 = d_distance.getDistance(center.getVertex1(), v).doubleValue();
            double d = (d0 + center.getDistance()) - (d1 + l(center.getEdge()) - center.getDistance());
            if (d < 0 || (d == 0 && vc <= 0)) {
                addPath(tree, center.getVertex0(), v);
            } else {
                addPath(tree, center.getVertex1(), v);
            }
        }

        return tree;
    }

    private void addPath(DelegateTree<V, E> tree, V u, V v) {
        Map<V, E> incomingEdgeMap = d_shortestPath.getIncomingEdgeMap(u);
        LinkedList<V> path = new LinkedList<V>();
        while (!v.equals(u)) {
            path.addFirst(v);
            E e = incomingEdgeMap.get(v);
            List<V> incidentVertices = new ArrayList<V>(d_graph.getIncidentVertices(e));
            v = incidentVertices.get(0).equals(v) ? incidentVertices.get(1) : incidentVertices.get(0);
        }
        path.addFirst(u);
        for (int i = 0; i < path.size() - 1; ++i) {
            E e = d_graph.findEdge(path.get(i), path.get(i + 1));
            if (!tree.containsEdge(e)) {
                tree.addChild(e, path.get(i), path.get(i + 1));
            }
        }
    }

    private double l(E e) {
        return d_edgeLength.transform(e).doubleValue();
    }
}