Java tutorial
/* * This file is part of ADDIS (Aggregate Data Drug Information System). * ADDIS is distributed from http://drugis.org/. * Copyright 2009 Gert van Valkenhoef, Tommi Tervonen. * Copyright 2010 Gert van Valkenhoef, Tommi Tervonen, Tijs Zwinkels, * Maarten Jacobs, Hanno Koeslag, Florin Schimbinschi, Ahmad Kamal, Daniel * Reid. * Copyright 2011 Gert van Valkenhoef, Ahmad Kamal, Daniel Reid, Florin * Schimbinschi. * Copyright 2012 Gert van Valkenhoef, Daniel Reid, Jol Kuiper, Wouter * Reckman. * Copyright 2013 Gert van Valkenhoef, Jol Kuiper. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package org.drugis.addis.presentation; import java.text.DecimalFormat; import org.apache.commons.math3.distribution.NormalDistribution; import org.drugis.addis.entities.ContinuousMeasurement; import org.drugis.common.Interval; import com.jgoodies.binding.PresentationModel; import com.jgoodies.binding.value.AbstractValueModel; // FIXME: there should be separate implementations of this class for each concrete Measurement, // and these should implement the PROPERTY_LABEL, in stead of the Measurement itself. @SuppressWarnings("serial") public class ContinuousMeasurementPresentation<T extends ContinuousMeasurement> extends PresentationModel<T> implements LabeledPresentation { public ContinuousMeasurementPresentation(T bean) { super(bean); } public AbstractValueModel getLabelModel() { return new DefaultLabelModel(getBean()); } @Override public String toString() { return (String) getLabelModel().getValue(); } public String normConfIntervalString() { DecimalFormat df = new DecimalFormat("###0.00"); NormalDistribution distribution = new NormalDistribution(getBean().getMean(), getBean().getStdDev()); Interval<Double> confInterval; confInterval = new Interval<Double>(distribution.inverseCumulativeProbability(0.025), distribution.inverseCumulativeProbability(0.975)); return df.format(getBean().getMean()) + " (" + df.format(confInterval.getLowerBound()) + ", " + df.format(confInterval.getUpperBound()) + ")"; } }