Java tutorial
/* * * * Copyright 2015 Skymind,Inc. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * */ package org.deeplearning4j.plot; import com.google.common.primitives.Ints; import org.apache.commons.math3.util.FastMath; import org.deeplearning4j.berkeley.Pair; import org.deeplearning4j.optimize.api.IterationListener; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.dimensionalityreduction.PCA; import org.nd4j.linalg.factory.Nd4j; import org.nd4j.linalg.indexing.BooleanIndexing; import org.nd4j.linalg.indexing.INDArrayIndex; import org.nd4j.linalg.indexing.SpecifiedIndex; import org.nd4j.linalg.indexing.conditions.Conditions; import org.nd4j.linalg.indexing.functions.Value; import org.nd4j.linalg.indexing.functions.Zero; import org.nd4j.linalg.io.ClassPathResource; import org.nd4j.linalg.learning.AdaGrad; import org.nd4j.linalg.util.ArrayUtil; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.*; import java.util.List; import static org.nd4j.linalg.factory.Nd4j.*; import static org.nd4j.linalg.ops.transforms.Transforms.*; /** * Tsne calculation * @author Adam Gibson */ @Deprecated public class LegacyTsne implements Serializable { protected int maxIter = 1000; protected double realMin = Nd4j.EPS_THRESHOLD; protected double initialMomentum = 0.5; protected double finalMomentum = 0.8; protected double minGain = 1e-2; protected double momentum = initialMomentum; protected int switchMomentumIteration = 100; protected boolean normalize = true; protected boolean usePca = false; protected int stopLyingIteration = 250; protected double tolerance = 1e-5; protected double learningRate = 500; protected AdaGrad adaGrad; protected boolean useAdaGrad = true; protected double perplexity = 30; protected INDArray gains, yIncs; protected INDArray y; protected transient IterationListener iterationListener; protected static ClassPathResource r = new ClassPathResource("/scripts/tsne.py"); protected static final Logger log = LoggerFactory.getLogger(LegacyTsne.class); public LegacyTsne() { } public LegacyTsne(int maxIter, double realMin, double initialMomentum, double finalMomentum, double momentum, int switchMomentumIteration, boolean normalize, boolean usePca, int stopLyingIteration, double tolerance, double learningRate, boolean useAdaGrad, double perplexity, double minGain) { this.tolerance = tolerance; this.minGain = minGain; this.useAdaGrad = useAdaGrad; this.learningRate = learningRate; this.stopLyingIteration = stopLyingIteration; this.maxIter = maxIter; this.realMin = realMin; this.normalize = normalize; this.initialMomentum = initialMomentum; this.usePca = usePca; this.finalMomentum = finalMomentum; this.momentum = momentum; this.switchMomentumIteration = switchMomentumIteration; this.perplexity = perplexity; } /** * Computes a gaussian kernel * given a vector of squared distance distances * * @param d the data * @param beta * @return */ public Pair<INDArray, INDArray> hBeta(INDArray d, double beta) { INDArray P = exp(d.neg().muli(beta)); double sum = P.sumNumber().doubleValue(); double logSum = FastMath.log(sum); INDArray H = d.mul(P).sum(0).muli(beta).divi(sum).addi(logSum); P.divi(sum); return new Pair<>(H, P); } /** * Convert data to probability * co-occurrences (aka calculating the kernel) * @param d the data to convert * @param u the perplexity of the model * @return the probabilities of co-occurrence */ public INDArray computeGaussianPerplexity(final INDArray d, double u) { int n = d.rows(); final INDArray p = zeros(n, n); final INDArray beta = ones(n, 1); final double logU = Math.log(u); log.info("Calculating probabilities of data similarities.."); for (int i = 0; i < n; i++) { if (i % 500 == 0 && i > 0) log.info("Handled " + i + " records"); double betaMin = Double.NEGATIVE_INFINITY; double betaMax = Double.POSITIVE_INFINITY; int[] vals = Ints.concat(ArrayUtil.range(0, i), ArrayUtil.range(i + 1, d.columns())); INDArrayIndex[] range = new INDArrayIndex[] { new SpecifiedIndex(vals) }; INDArray row = d.slice(i).get(range); Pair<INDArray, INDArray> pair = hBeta(row, beta.getDouble(i)); INDArray hDiff = pair.getFirst().sub(logU); int tries = 0; //while hdiff > tolerance while (BooleanIndexing.and(abs(hDiff), Conditions.greaterThan(tolerance)) && tries < 50) { //if hdiff > 0 if (BooleanIndexing.and(hDiff, Conditions.greaterThan(0))) { if (Double.isInfinite(betaMax)) beta.putScalar(i, beta.getDouble(i) * 2.0); else beta.putScalar(i, (beta.getDouble(i) + betaMax) / 2.0); betaMin = beta.getDouble(i); } else { if (Double.isInfinite(betaMin)) beta.putScalar(i, beta.getDouble(i) / 2.0); else beta.putScalar(i, (beta.getDouble(i) + betaMin) / 2.0); betaMax = beta.getDouble(i); } pair = hBeta(row, beta.getDouble(i)); hDiff = pair.getFirst().subi(logU); tries++; } p.slice(i).put(range, pair.getSecond()); } //dont need data in memory after log.info("Mean value of sigma " + sqrt(beta.rdiv(1)).mean(Integer.MAX_VALUE)); BooleanIndexing.applyWhere(p, Conditions.isNan(), new Value(realMin)); //set 0 along the diagonal INDArray permute = p.transpose(); INDArray pOut = p.add(permute); pOut.divi(pOut.sum(Integer.MAX_VALUE)); BooleanIndexing.applyWhere(pOut, Conditions.lessThan(Nd4j.EPS_THRESHOLD), new Value(Nd4j.EPS_THRESHOLD)); //ensure no nans return pOut; } /** * * @param X * @param nDims * @param perplexity */ public INDArray calculate(INDArray X, int nDims, double perplexity) { if (usePca) X = PCA.pca(X, Math.min(50, X.columns()), normalize); //normalization (don't normalize again after pca) if (normalize) { X.subi(X.min(Integer.MAX_VALUE)); X = X.divi(X.max(Integer.MAX_VALUE)); X = X.subiRowVector(X.mean(0)); } if (nDims > X.columns()) nDims = X.columns(); INDArray sumX = pow(X, 2).sum(1); INDArray D = X.mmul(X.transpose()).muli(-2).addRowVector(sumX).transpose().addRowVector(sumX); //output if (y == null) y = randn(X.rows(), nDims, Nd4j.getRandom()).muli(1e-3f); INDArray p = computeGaussianPerplexity(D, perplexity); //lie for better local minima p.muli(4); //init adagrad where needed if (useAdaGrad) { if (adaGrad == null) { adaGrad = new AdaGrad(learningRate); } } for (int i = 0; i < maxIter; i++) { step(p, i); if (i == switchMomentumIteration) momentum = finalMomentum; if (i == stopLyingIteration) p.divi(4); if (iterationListener != null) iterationListener.iterationDone(null, i); } return y; } /* compute the gradient given the current solution, the probabilities and the constant */ protected Pair<Double, INDArray> gradient(INDArray p) { INDArray sumY = pow(y, 2).sum(1); if (yIncs == null) yIncs = zeros(y.shape()); if (gains == null) gains = ones(y.shape()); //Student-t distribution //also un normalized q INDArray qu = y.mmul(y.transpose()).muli(-2).addiRowVector(sumY).transpose().addiRowVector(sumY).addi(1) .rdivi(1); int n = y.rows(); //set diagonal to zero doAlongDiagonal(qu, new Zero()); // normalize to get probabilities INDArray q = qu.div(qu.sum(Integer.MAX_VALUE)); BooleanIndexing.applyWhere(q, Conditions.lessThan(realMin), new Value(realMin)); INDArray PQ = p.sub(q); INDArray yGrads = getYGradient(n, PQ, qu); gains = gains.add(.2) .muli(yGrads.cond(Conditions.greaterThan(0)).neqi(yIncs.cond(Conditions.greaterThan(0)))) .addi(gains.mul(0.8) .muli(yGrads.cond(Conditions.greaterThan(0)).eqi(yIncs.cond(Conditions.greaterThan(0))))); BooleanIndexing.applyWhere(gains, Conditions.lessThan(minGain), new Value(minGain)); INDArray gradChange = gains.mul(yGrads); if (useAdaGrad) gradChange = adaGrad.getGradient(gradChange, 0); else gradChange.muli(learningRate); yIncs.muli(momentum).subi(gradChange); double cost = p.mul(log(p.div(q), false)).sum(Integer.MAX_VALUE).getDouble(0); return new Pair<>(cost, yIncs); } public INDArray getYGradient(int n, INDArray PQ, INDArray qu) { INDArray yGrads = Nd4j.create(y.shape()); for (int i = 0; i < n; i++) { INDArray sum1 = Nd4j.tile(PQ.getRow(i).mul(qu.getRow(i)), new int[] { y.columns(), 1 }).transpose() .mul(y.getRow(i).broadcast(y.shape()).sub(y)).sum(0); yGrads.putRow(i, sum1); } return yGrads; } /** * An individual iteration * @param p the probabilities that certain points * are near each other * @param i the iteration (primarily for debugging purposes) */ public void step(INDArray p, int i) { Pair<Double, INDArray> costGradient = gradient(p); INDArray yIncs = costGradient.getSecond(); log.info("Cost at iteration " + i + " was " + costGradient.getFirst()); y.addi(yIncs); y.addi(yIncs).subiRowVector(y.mean(0)); INDArray tiled = Nd4j.tile(y.mean(0), new int[] { y.rows(), 1 }); y.subi(tiled); } /** * Plot tsne (write the coordinates file) * @param matrix the matrix to plot * @param nDims the number of dimensions * @param labels * @throws IOException */ public void plot(INDArray matrix, int nDims, List<String> labels) throws IOException { plot(matrix, nDims, labels, "coords.csv"); } /** * Plot tsne * @param matrix the matrix to plot * @param nDims the number * @param labels * @param path the path to write * @throws IOException */ public void plot(INDArray matrix, int nDims, List<String> labels, String path) throws IOException { calculate(matrix, nDims, perplexity); BufferedWriter write = new BufferedWriter(new FileWriter(new File(path), true)); for (int i = 0; i < y.rows(); i++) { if (i >= labels.size()) break; String word = labels.get(i); if (word == null) continue; StringBuffer sb = new StringBuffer(); INDArray wordVector = y.getRow(i); for (int j = 0; j < wordVector.length(); j++) { sb.append(wordVector.getDouble(j)); if (j < wordVector.length() - 1) sb.append(","); } sb.append(","); sb.append(word); sb.append(" "); sb.append("\n"); write.write(sb.toString()); } write.flush(); write.close(); } public INDArray getY() { return y; } public void setY(INDArray y) { this.y = y; } public IterationListener getIterationListener() { return iterationListener; } public void setIterationListener(IterationListener iterationListener) { this.iterationListener = iterationListener; } public INDArray diag(INDArray ds) { boolean isLong = ds.rows() > ds.columns(); INDArray sliceZero = ds.slice(0); int dim = Math.max(ds.columns(), ds.rows()); INDArray result = Nd4j.create(dim, dim); for (int i = 0; i < dim; i++) { INDArray sliceSrc = ds.slice(i); INDArray sliceDst = result.slice(i); for (int j = 0; j < dim; j++) { if (i == j) { if (isLong) sliceDst.putScalar(j, sliceSrc.getDouble(0)); else sliceDst.putScalar(j, sliceZero.getDouble(i)); } } } return result; } public static class Builder { protected int maxIter = 1000; protected double realMin = 1e-12f; protected double initialMomentum = 5e-1f; protected double finalMomentum = 8e-1f; protected double momentum = 5e-1f; protected int switchMomentumIteration = 100; protected boolean normalize = true; protected boolean usePca = false; protected int stopLyingIteration = 100; protected double tolerance = 1e-5f; protected double learningRate = 1e-1f; protected boolean useAdaGrad = false; protected double perplexity = 30; protected double minGain = 1e-1f; public Builder minGain(double minGain) { this.minGain = minGain; return this; } public Builder perplexity(double perplexity) { this.perplexity = perplexity; return this; } public Builder useAdaGrad(boolean useAdaGrad) { this.useAdaGrad = useAdaGrad; return this; } public Builder learningRate(double learningRate) { this.learningRate = learningRate; return this; } public Builder tolerance(double tolerance) { this.tolerance = tolerance; return this; } public Builder stopLyingIteration(int stopLyingIteration) { this.stopLyingIteration = stopLyingIteration; return this; } public Builder usePca(boolean usePca) { this.usePca = usePca; return this; } public Builder normalize(boolean normalize) { this.normalize = normalize; return this; } public Builder setMaxIter(int maxIter) { this.maxIter = maxIter; return this; } public Builder setRealMin(double realMin) { this.realMin = realMin; return this; } public Builder setInitialMomentum(double initialMomentum) { this.initialMomentum = initialMomentum; return this; } public Builder setFinalMomentum(double finalMomentum) { this.finalMomentum = finalMomentum; return this; } public Builder setMomentum(double momentum) { this.momentum = momentum; return this; } public Builder setSwitchMomentumIteration(int switchMomentumIteration) { this.switchMomentumIteration = switchMomentumIteration; return this; } public LegacyTsne build() { return new LegacyTsne(maxIter, realMin, initialMomentum, finalMomentum, momentum, switchMomentumIteration, normalize, usePca, stopLyingIteration, tolerance, learningRate, useAdaGrad, perplexity, minGain); } } }