Java tutorial
/* * Carrot2 project. * * Copyright (C) 2002-2014, Dawid Weiss, Stanisaw Osiski. * All rights reserved. * * Refer to the full license file "carrot2.LICENSE" * in the root folder of the repository checkout or at: * http://www.carrot2.org/carrot2.LICENSE */ package org.carrot2.examples.clustering; import java.util.Map; import java.util.Set; import org.carrot2.clustering.lingo.LingoClusteringAlgorithm; import org.carrot2.clustering.stc.STCClusteringAlgorithm; import org.carrot2.core.Controller; import org.carrot2.core.ControllerFactory; import org.carrot2.core.IClusteringAlgorithm; import org.carrot2.core.IDocumentSource; import org.carrot2.core.LanguageCode; import org.carrot2.core.ProcessingResult; import org.carrot2.core.attribute.CommonAttributesDescriptor; import org.carrot2.examples.ConsoleFormatter; import org.carrot2.examples.SampleDocumentData; import org.carrot2.text.analysis.ExtendedWhitespaceTokenizer; import org.carrot2.text.analysis.ITokenizer; import org.carrot2.text.linguistic.ILexicalData; import org.carrot2.text.linguistic.ILexicalDataFactory; import org.carrot2.text.linguistic.IStemmer; import org.carrot2.text.linguistic.IStemmerFactory; import org.carrot2.text.linguistic.ITokenizerFactory; import org.carrot2.text.preprocessing.pipeline.BasicPreprocessingPipelineDescriptor; import org.carrot2.text.util.MutableCharArray; import com.google.common.collect.ImmutableSet; import com.google.common.collect.Lists; import com.google.common.collect.Maps; /** * This example shows how to perform clustering using a custom language model, including * stop words, stop labels and stemmer. */ public class UsingCustomLanguageModel { public static void main(String[] args) { @SuppressWarnings("unchecked") final Controller controller = ControllerFactory.createCachingPooling(IDocumentSource.class); // We will pass our custom language model element factories classes as a // initialization-time attributes. It is preferred to passing them as // processing-time attributes because the instances created at initialization // time will be reused for all further requests. Map<String, Object> attrs = Maps.newHashMap(); BasicPreprocessingPipelineDescriptor.attributeBuilder(attrs).stemmerFactory(CustomStemmerFactory.class) .tokenizerFactory(CustomTokenizerFactory.class).lexicalDataFactory(CustomLexicalDataFactory.class); controller.init(attrs); // Cluster some data with Lingo and STC. Notice how the cluster quality degrades // when the stop word list is empty (especially for STC). clusterAndDisplayClusters(controller, LingoClusteringAlgorithm.class); clusterAndDisplayClusters(controller, STCClusteringAlgorithm.class); } /** * Clusters results for query "data mining" and displays the clusters. */ private static void clusterAndDisplayClusters(final Controller controller, final Class<? extends IClusteringAlgorithm> clusteringAlgorithm) { final Map<String, Object> processingAttributes = Maps.newHashMap(); CommonAttributesDescriptor.attributeBuilder(processingAttributes) .documents(Lists.newArrayList(SampleDocumentData.DOCUMENTS_DATA_MINING)).query("data mining"); final ProcessingResult result = controller.process(processingAttributes, clusteringAlgorithm); ConsoleFormatter.displayClusters(result.getClusters(), 0); } public static class CustomStemmerFactory implements IStemmerFactory { /** * Custom language model implementation. This one uses some contrived algorithms * and stop words just to demonstrate how they work. */ @Override public IStemmer getStemmer(LanguageCode languageCode) { // Here we always return the same language model, regardless of the requested // language. In your implementation you may want to return different models // based on the language, if needed. System.out.println("stemmer"); return new IStemmer() { public CharSequence stem(CharSequence word) { // Some contrived stemming algorithm return word.length() > 3 ? word.subSequence(0, word.length() - 2) : null; } }; } } public static class CustomTokenizerFactory implements ITokenizerFactory { @Override public ITokenizer getTokenizer(LanguageCode languageCode) { // Here we always return the same language model, regardless of the requested // language. In your implementation you may want to return different models // based on the language, if needed. System.out.println("tokenizer"); return new ExtendedWhitespaceTokenizer(); } } public static class CustomLexicalDataFactory implements ILexicalDataFactory { private static final Set<? extends CharSequence> STOP_WORDS = ImmutableSet.of("text"); @Override public ILexicalData getLexicalData(LanguageCode languageCode) { // Here we always return the same language model, regardless of the requested // language. In your implementation you may want to return different models // based on the language, if needed. System.out.println("lexical data"); return new ILexicalData() { @Override public boolean isStopLabel(CharSequence formattedLabel) { return formattedLabel.length() <= 4; } @Override public boolean isCommonWord(MutableCharArray word) { return STOP_WORDS.contains(word.toString()); } }; } } }