Java tutorial
package org.bouncycastle.crypto.signers; import java.math.BigInteger; import java.security.SecureRandom; import org.bouncycastle.crypto.CipherParameters; import org.bouncycastle.crypto.CryptoServicesRegistrar; import org.bouncycastle.crypto.DSAExt; import org.bouncycastle.crypto.params.DSAKeyParameters; import org.bouncycastle.crypto.params.DSAParameters; import org.bouncycastle.crypto.params.DSAPrivateKeyParameters; import org.bouncycastle.crypto.params.DSAPublicKeyParameters; import org.bouncycastle.crypto.params.ParametersWithRandom; import org.bouncycastle.util.BigIntegers; /** * The Digital Signature Algorithm - as described in "Handbook of Applied * Cryptography", pages 452 - 453. */ public class DSASigner implements DSAExt { private final DSAKCalculator kCalculator; private DSAKeyParameters key; private SecureRandom random; /** * Default configuration, random K values. */ public DSASigner() { this.kCalculator = new RandomDSAKCalculator(); } /** * Configuration with an alternate, possibly deterministic calculator of K. * * @param kCalculator a K value calculator. */ public DSASigner(DSAKCalculator kCalculator) { this.kCalculator = kCalculator; } public void init(boolean forSigning, CipherParameters param) { SecureRandom providedRandom = null; if (forSigning) { if (param instanceof ParametersWithRandom) { ParametersWithRandom rParam = (ParametersWithRandom) param; this.key = (DSAPrivateKeyParameters) rParam.getParameters(); providedRandom = rParam.getRandom(); } else { this.key = (DSAPrivateKeyParameters) param; } } else { this.key = (DSAPublicKeyParameters) param; } this.random = initSecureRandom(forSigning && !kCalculator.isDeterministic(), providedRandom); } public BigInteger getOrder() { return key.getParameters().getQ(); } /** * generate a signature for the given message using the key we were * initialised with. For conventional DSA the message should be a SHA-1 * hash of the message of interest. * * @param message the message that will be verified later. */ public BigInteger[] generateSignature(byte[] message) { DSAParameters params = key.getParameters(); BigInteger q = params.getQ(); BigInteger m = calculateE(q, message); BigInteger x = ((DSAPrivateKeyParameters) key).getX(); if (kCalculator.isDeterministic()) { kCalculator.init(q, x, message); } else { kCalculator.init(q, random); } BigInteger k = kCalculator.nextK(); // the randomizer is to conceal timing information related to k and x. BigInteger r = params.getG().modPow(k.add(getRandomizer(q, random)), params.getP()).mod(q); k = k.modInverse(q).multiply(m.add(x.multiply(r))); BigInteger s = k.mod(q); return new BigInteger[] { r, s }; } /** * return true if the value r and s represent a DSA signature for * the passed in message for standard DSA the message should be a * SHA-1 hash of the real message to be verified. */ public boolean verifySignature(byte[] message, BigInteger r, BigInteger s) { DSAParameters params = key.getParameters(); BigInteger q = params.getQ(); BigInteger m = calculateE(q, message); BigInteger zero = BigInteger.valueOf(0); if (zero.compareTo(r) >= 0 || q.compareTo(r) <= 0) { return false; } if (zero.compareTo(s) >= 0 || q.compareTo(s) <= 0) { return false; } BigInteger w = s.modInverse(q); BigInteger u1 = m.multiply(w).mod(q); BigInteger u2 = r.multiply(w).mod(q); BigInteger p = params.getP(); u1 = params.getG().modPow(u1, p); u2 = ((DSAPublicKeyParameters) key).getY().modPow(u2, p); BigInteger v = u1.multiply(u2).mod(p).mod(q); return v.equals(r); } private BigInteger calculateE(BigInteger n, byte[] message) { if (n.bitLength() >= message.length * 8) { return new BigInteger(1, message); } else { byte[] trunc = new byte[n.bitLength() / 8]; System.arraycopy(message, 0, trunc, 0, trunc.length); return new BigInteger(1, trunc); } } protected SecureRandom initSecureRandom(boolean needed, SecureRandom provided) { return !needed ? null : (provided != null) ? provided : CryptoServicesRegistrar.getSecureRandom(); } private BigInteger getRandomizer(BigInteger q, SecureRandom provided) { // Calculate a random multiple of q to add to k. Note that g^q = 1 (mod p), so adding multiple of q to k does not change r. int randomBits = 7; return BigIntegers .createRandomBigInteger(randomBits, provided != null ? provided : CryptoServicesRegistrar.getSecureRandom()) .add(BigInteger.valueOf(128)).multiply(q); } }