Java tutorial
package org.bouncycastle.crypto.generators; import java.math.BigInteger; import org.bouncycastle.crypto.AsymmetricCipherKeyPair; import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator; import org.bouncycastle.crypto.KeyGenerationParameters; import org.bouncycastle.crypto.params.RSAKeyGenerationParameters; import org.bouncycastle.crypto.params.RSAKeyParameters; import org.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters; import org.bouncycastle.math.Primes; import org.bouncycastle.math.ec.WNafUtil; import org.bouncycastle.util.BigIntegers; /** * an RSA key pair generator. */ public class RSAKeyPairGenerator implements AsymmetricCipherKeyPairGenerator { private static final BigInteger ONE = BigInteger.valueOf(1); private RSAKeyGenerationParameters param; public void init(KeyGenerationParameters param) { this.param = (RSAKeyGenerationParameters) param; } public AsymmetricCipherKeyPair generateKeyPair() { AsymmetricCipherKeyPair result = null; boolean done = false; // // p and q values should have a length of half the strength in bits // int strength = param.getStrength(); int pbitlength = (strength + 1) / 2; int qbitlength = strength - pbitlength; int mindiffbits = (strength / 2) - 100; if (mindiffbits < strength / 3) { mindiffbits = strength / 3; } int minWeight = strength >> 2; // d lower bound is 2^(strength / 2) BigInteger dLowerBound = BigInteger.valueOf(2).pow(strength / 2); // squared bound (sqrt(2)*2^(nlen/2-1))^2 BigInteger squaredBound = ONE.shiftLeft(strength - 1); // 2^(nlen/2 - 100) BigInteger minDiff = ONE.shiftLeft(mindiffbits); while (!done) { BigInteger p, q, n, d, e, pSub1, qSub1, gcd, lcm; e = param.getPublicExponent(); p = chooseRandomPrime(pbitlength, e, squaredBound); // // generate a modulus of the required length // for (;;) { q = chooseRandomPrime(qbitlength, e, squaredBound); // p and q should not be too close together (or equal!) BigInteger diff = q.subtract(p).abs(); if (diff.bitLength() < mindiffbits || diff.compareTo(minDiff) <= 0) { continue; } // // calculate the modulus // n = p.multiply(q); if (n.bitLength() != strength) { // // if we get here our primes aren't big enough, make the largest // of the two p and try again // p = p.max(q); continue; } /* * Require a minimum weight of the NAF representation, since low-weight composites may * be weak against a version of the number-field-sieve for factoring. * * See "The number field sieve for integers of low weight", Oliver Schirokauer. */ if (WNafUtil.getNafWeight(n) < minWeight) { p = chooseRandomPrime(pbitlength, e, squaredBound); continue; } break; } if (p.compareTo(q) < 0) { gcd = p; p = q; q = gcd; } pSub1 = p.subtract(ONE); qSub1 = q.subtract(ONE); gcd = pSub1.gcd(qSub1); lcm = pSub1.divide(gcd).multiply(qSub1); // // calculate the private exponent // d = e.modInverse(lcm); if (d.compareTo(dLowerBound) <= 0) { continue; } else { done = true; } // // calculate the CRT factors // BigInteger dP, dQ, qInv; dP = d.remainder(pSub1); dQ = d.remainder(qSub1); qInv = q.modInverse(p); result = new AsymmetricCipherKeyPair(new RSAKeyParameters(false, n, e), new RSAPrivateCrtKeyParameters(n, e, d, p, q, dP, dQ, qInv)); } return result; } /** * Choose a random prime value for use with RSA * * @param bitlength the bit-length of the returned prime * @param e the RSA public exponent * @return A prime p, with (p-1) relatively prime to e */ protected BigInteger chooseRandomPrime(int bitlength, BigInteger e, BigInteger sqrdBound) { for (int i = 0; i != 5 * bitlength; i++) { BigInteger p = BigIntegers.createRandomPrime(bitlength, 1, param.getRandom()); if (p.mod(e).equals(ONE)) { continue; } if (p.multiply(p).compareTo(sqrdBound) < 0) { continue; } if (!isProbablePrime(p)) { continue; } if (!e.gcd(p.subtract(ONE)).equals(ONE)) { continue; } return p; } throw new IllegalStateException("unable to generate prime number for RSA key"); } protected boolean isProbablePrime(BigInteger x) { int iterations = getNumberOfIterations(x.bitLength(), param.getCertainty()); /* * Primes class for FIPS 186-4 C.3 primality checking */ return !Primes.hasAnySmallFactors(x) && Primes.isMRProbablePrime(x, param.getRandom(), iterations); } private static int getNumberOfIterations(int bits, int certainty) { /* * NOTE: We enforce a minimum 'certainty' of 100 for bits >= 1024 (else 80). Where the * certainty is higher than the FIPS 186-4 tables (C.2/C.3) cater to, extra iterations * are added at the "worst case rate" for the excess. */ if (bits >= 1536) { return certainty <= 100 ? 3 : certainty <= 128 ? 4 : 4 + (certainty - 128 + 1) / 2; } else if (bits >= 1024) { return certainty <= 100 ? 4 : certainty <= 112 ? 5 : 5 + (certainty - 112 + 1) / 2; } else if (bits >= 512) { return certainty <= 80 ? 5 : certainty <= 100 ? 7 : 7 + (certainty - 100 + 1) / 2; } else { return certainty <= 80 ? 40 : 40 + (certainty - 80 + 1) / 2; } } }