org.bouncycastle.crypto.engines.SerpentEngine.java Source code

Java tutorial

Introduction

Here is the source code for org.bouncycastle.crypto.engines.SerpentEngine.java

Source

package org.bouncycastle.crypto.engines;

import org.bouncycastle.util.Pack;

/**
 * Serpent is a 128-bit 32-round block cipher with variable key lengths,
 * including 128, 192 and 256 bit keys conjectured to be at least as
 * secure as three-key triple-DES.
 * <p>
 * Serpent was designed by Ross Anderson, Eli Biham and Lars Knudsen as a
 * candidate algorithm for the NIST AES Quest.
 * <p>
 * For full details see <a href="http://www.cl.cam.ac.uk/~rja14/serpent.html">The Serpent home page</a>
 */
public final class SerpentEngine extends SerpentEngineBase {
    /**
     * Expand a user-supplied key material into a session key.
     *
     * @param key  The user-key bytes (multiples of 4) to use.
     * @exception IllegalArgumentException
     */
    protected int[] makeWorkingKey(byte[] key) throws IllegalArgumentException {
        //
        // pad key to 256 bits
        //
        int[] kPad = new int[16];
        int off = 0;
        int length = 0;

        for (off = 0; (off + 4) < key.length; off += 4) {
            kPad[length++] = Pack.littleEndianToInt(key, off);
        }

        if (off % 4 == 0) {
            kPad[length++] = Pack.littleEndianToInt(key, off);
            if (length < 8) {
                kPad[length] = 1;
            }
        } else {
            throw new IllegalArgumentException("key must be a multiple of 4 bytes");
        }

        //
        // expand the padded key up to 33 x 128 bits of key material
        //
        int amount = (ROUNDS + 1) * 4;
        int[] w = new int[amount];

        //
        // compute w0 to w7 from w-8 to w-1
        //
        for (int i = 8; i < 16; i++) {
            kPad[i] = rotateLeft(kPad[i - 8] ^ kPad[i - 5] ^ kPad[i - 3] ^ kPad[i - 1] ^ PHI ^ (i - 8), 11);
        }

        System.arraycopy(kPad, 8, w, 0, 8);

        //
        // compute w8 to w136
        //
        for (int i = 8; i < amount; i++) {
            w[i] = rotateLeft(w[i - 8] ^ w[i - 5] ^ w[i - 3] ^ w[i - 1] ^ PHI ^ i, 11);
        }

        //
        // create the working keys by processing w with the Sbox and IP
        //
        sb3(w[0], w[1], w[2], w[3]);
        w[0] = X0;
        w[1] = X1;
        w[2] = X2;
        w[3] = X3;
        sb2(w[4], w[5], w[6], w[7]);
        w[4] = X0;
        w[5] = X1;
        w[6] = X2;
        w[7] = X3;
        sb1(w[8], w[9], w[10], w[11]);
        w[8] = X0;
        w[9] = X1;
        w[10] = X2;
        w[11] = X3;
        sb0(w[12], w[13], w[14], w[15]);
        w[12] = X0;
        w[13] = X1;
        w[14] = X2;
        w[15] = X3;
        sb7(w[16], w[17], w[18], w[19]);
        w[16] = X0;
        w[17] = X1;
        w[18] = X2;
        w[19] = X3;
        sb6(w[20], w[21], w[22], w[23]);
        w[20] = X0;
        w[21] = X1;
        w[22] = X2;
        w[23] = X3;
        sb5(w[24], w[25], w[26], w[27]);
        w[24] = X0;
        w[25] = X1;
        w[26] = X2;
        w[27] = X3;
        sb4(w[28], w[29], w[30], w[31]);
        w[28] = X0;
        w[29] = X1;
        w[30] = X2;
        w[31] = X3;
        sb3(w[32], w[33], w[34], w[35]);
        w[32] = X0;
        w[33] = X1;
        w[34] = X2;
        w[35] = X3;
        sb2(w[36], w[37], w[38], w[39]);
        w[36] = X0;
        w[37] = X1;
        w[38] = X2;
        w[39] = X3;
        sb1(w[40], w[41], w[42], w[43]);
        w[40] = X0;
        w[41] = X1;
        w[42] = X2;
        w[43] = X3;
        sb0(w[44], w[45], w[46], w[47]);
        w[44] = X0;
        w[45] = X1;
        w[46] = X2;
        w[47] = X3;
        sb7(w[48], w[49], w[50], w[51]);
        w[48] = X0;
        w[49] = X1;
        w[50] = X2;
        w[51] = X3;
        sb6(w[52], w[53], w[54], w[55]);
        w[52] = X0;
        w[53] = X1;
        w[54] = X2;
        w[55] = X3;
        sb5(w[56], w[57], w[58], w[59]);
        w[56] = X0;
        w[57] = X1;
        w[58] = X2;
        w[59] = X3;
        sb4(w[60], w[61], w[62], w[63]);
        w[60] = X0;
        w[61] = X1;
        w[62] = X2;
        w[63] = X3;
        sb3(w[64], w[65], w[66], w[67]);
        w[64] = X0;
        w[65] = X1;
        w[66] = X2;
        w[67] = X3;
        sb2(w[68], w[69], w[70], w[71]);
        w[68] = X0;
        w[69] = X1;
        w[70] = X2;
        w[71] = X3;
        sb1(w[72], w[73], w[74], w[75]);
        w[72] = X0;
        w[73] = X1;
        w[74] = X2;
        w[75] = X3;
        sb0(w[76], w[77], w[78], w[79]);
        w[76] = X0;
        w[77] = X1;
        w[78] = X2;
        w[79] = X3;
        sb7(w[80], w[81], w[82], w[83]);
        w[80] = X0;
        w[81] = X1;
        w[82] = X2;
        w[83] = X3;
        sb6(w[84], w[85], w[86], w[87]);
        w[84] = X0;
        w[85] = X1;
        w[86] = X2;
        w[87] = X3;
        sb5(w[88], w[89], w[90], w[91]);
        w[88] = X0;
        w[89] = X1;
        w[90] = X2;
        w[91] = X3;
        sb4(w[92], w[93], w[94], w[95]);
        w[92] = X0;
        w[93] = X1;
        w[94] = X2;
        w[95] = X3;
        sb3(w[96], w[97], w[98], w[99]);
        w[96] = X0;
        w[97] = X1;
        w[98] = X2;
        w[99] = X3;
        sb2(w[100], w[101], w[102], w[103]);
        w[100] = X0;
        w[101] = X1;
        w[102] = X2;
        w[103] = X3;
        sb1(w[104], w[105], w[106], w[107]);
        w[104] = X0;
        w[105] = X1;
        w[106] = X2;
        w[107] = X3;
        sb0(w[108], w[109], w[110], w[111]);
        w[108] = X0;
        w[109] = X1;
        w[110] = X2;
        w[111] = X3;
        sb7(w[112], w[113], w[114], w[115]);
        w[112] = X0;
        w[113] = X1;
        w[114] = X2;
        w[115] = X3;
        sb6(w[116], w[117], w[118], w[119]);
        w[116] = X0;
        w[117] = X1;
        w[118] = X2;
        w[119] = X3;
        sb5(w[120], w[121], w[122], w[123]);
        w[120] = X0;
        w[121] = X1;
        w[122] = X2;
        w[123] = X3;
        sb4(w[124], w[125], w[126], w[127]);
        w[124] = X0;
        w[125] = X1;
        w[126] = X2;
        w[127] = X3;
        sb3(w[128], w[129], w[130], w[131]);
        w[128] = X0;
        w[129] = X1;
        w[130] = X2;
        w[131] = X3;

        return w;
    }

    /**
     * Encrypt one block of plaintext.
     *
     * @param input the array containing the input data.
     * @param inOff offset into the in array the data starts at.
     * @param output the array the output data will be copied into.
     * @param outOff the offset into the out array the output will start at.
     */
    protected void encryptBlock(byte[] input, int inOff, byte[] output, int outOff) {
        X0 = Pack.littleEndianToInt(input, inOff);
        X1 = Pack.littleEndianToInt(input, inOff + 4);
        X2 = Pack.littleEndianToInt(input, inOff + 8);
        X3 = Pack.littleEndianToInt(input, inOff + 12);

        sb0(wKey[0] ^ X0, wKey[1] ^ X1, wKey[2] ^ X2, wKey[3] ^ X3);
        LT();
        sb1(wKey[4] ^ X0, wKey[5] ^ X1, wKey[6] ^ X2, wKey[7] ^ X3);
        LT();
        sb2(wKey[8] ^ X0, wKey[9] ^ X1, wKey[10] ^ X2, wKey[11] ^ X3);
        LT();
        sb3(wKey[12] ^ X0, wKey[13] ^ X1, wKey[14] ^ X2, wKey[15] ^ X3);
        LT();
        sb4(wKey[16] ^ X0, wKey[17] ^ X1, wKey[18] ^ X2, wKey[19] ^ X3);
        LT();
        sb5(wKey[20] ^ X0, wKey[21] ^ X1, wKey[22] ^ X2, wKey[23] ^ X3);
        LT();
        sb6(wKey[24] ^ X0, wKey[25] ^ X1, wKey[26] ^ X2, wKey[27] ^ X3);
        LT();
        sb7(wKey[28] ^ X0, wKey[29] ^ X1, wKey[30] ^ X2, wKey[31] ^ X3);
        LT();
        sb0(wKey[32] ^ X0, wKey[33] ^ X1, wKey[34] ^ X2, wKey[35] ^ X3);
        LT();
        sb1(wKey[36] ^ X0, wKey[37] ^ X1, wKey[38] ^ X2, wKey[39] ^ X3);
        LT();
        sb2(wKey[40] ^ X0, wKey[41] ^ X1, wKey[42] ^ X2, wKey[43] ^ X3);
        LT();
        sb3(wKey[44] ^ X0, wKey[45] ^ X1, wKey[46] ^ X2, wKey[47] ^ X3);
        LT();
        sb4(wKey[48] ^ X0, wKey[49] ^ X1, wKey[50] ^ X2, wKey[51] ^ X3);
        LT();
        sb5(wKey[52] ^ X0, wKey[53] ^ X1, wKey[54] ^ X2, wKey[55] ^ X3);
        LT();
        sb6(wKey[56] ^ X0, wKey[57] ^ X1, wKey[58] ^ X2, wKey[59] ^ X3);
        LT();
        sb7(wKey[60] ^ X0, wKey[61] ^ X1, wKey[62] ^ X2, wKey[63] ^ X3);
        LT();
        sb0(wKey[64] ^ X0, wKey[65] ^ X1, wKey[66] ^ X2, wKey[67] ^ X3);
        LT();
        sb1(wKey[68] ^ X0, wKey[69] ^ X1, wKey[70] ^ X2, wKey[71] ^ X3);
        LT();
        sb2(wKey[72] ^ X0, wKey[73] ^ X1, wKey[74] ^ X2, wKey[75] ^ X3);
        LT();
        sb3(wKey[76] ^ X0, wKey[77] ^ X1, wKey[78] ^ X2, wKey[79] ^ X3);
        LT();
        sb4(wKey[80] ^ X0, wKey[81] ^ X1, wKey[82] ^ X2, wKey[83] ^ X3);
        LT();
        sb5(wKey[84] ^ X0, wKey[85] ^ X1, wKey[86] ^ X2, wKey[87] ^ X3);
        LT();
        sb6(wKey[88] ^ X0, wKey[89] ^ X1, wKey[90] ^ X2, wKey[91] ^ X3);
        LT();
        sb7(wKey[92] ^ X0, wKey[93] ^ X1, wKey[94] ^ X2, wKey[95] ^ X3);
        LT();
        sb0(wKey[96] ^ X0, wKey[97] ^ X1, wKey[98] ^ X2, wKey[99] ^ X3);
        LT();
        sb1(wKey[100] ^ X0, wKey[101] ^ X1, wKey[102] ^ X2, wKey[103] ^ X3);
        LT();
        sb2(wKey[104] ^ X0, wKey[105] ^ X1, wKey[106] ^ X2, wKey[107] ^ X3);
        LT();
        sb3(wKey[108] ^ X0, wKey[109] ^ X1, wKey[110] ^ X2, wKey[111] ^ X3);
        LT();
        sb4(wKey[112] ^ X0, wKey[113] ^ X1, wKey[114] ^ X2, wKey[115] ^ X3);
        LT();
        sb5(wKey[116] ^ X0, wKey[117] ^ X1, wKey[118] ^ X2, wKey[119] ^ X3);
        LT();
        sb6(wKey[120] ^ X0, wKey[121] ^ X1, wKey[122] ^ X2, wKey[123] ^ X3);
        LT();
        sb7(wKey[124] ^ X0, wKey[125] ^ X1, wKey[126] ^ X2, wKey[127] ^ X3);

        Pack.intToLittleEndian(wKey[128] ^ X0, output, outOff);
        Pack.intToLittleEndian(wKey[129] ^ X1, output, outOff + 4);
        Pack.intToLittleEndian(wKey[130] ^ X2, output, outOff + 8);
        Pack.intToLittleEndian(wKey[131] ^ X3, output, outOff + 12);
    }

    /**
     * Decrypt one block of ciphertext.
     *
     * @param input the array containing the input data.
     * @param inOff offset into the in array the data starts at.
     * @param output the array the output data will be copied into.
     * @param outOff the offset into the out array the output will start at.
     */
    protected void decryptBlock(byte[] input, int inOff, byte[] output, int outOff) {
        X0 = wKey[128] ^ Pack.littleEndianToInt(input, inOff);
        X1 = wKey[129] ^ Pack.littleEndianToInt(input, inOff + 4);
        X2 = wKey[130] ^ Pack.littleEndianToInt(input, inOff + 8);
        X3 = wKey[131] ^ Pack.littleEndianToInt(input, inOff + 12);

        ib7(X0, X1, X2, X3);
        X0 ^= wKey[124];
        X1 ^= wKey[125];
        X2 ^= wKey[126];
        X3 ^= wKey[127];
        inverseLT();
        ib6(X0, X1, X2, X3);
        X0 ^= wKey[120];
        X1 ^= wKey[121];
        X2 ^= wKey[122];
        X3 ^= wKey[123];
        inverseLT();
        ib5(X0, X1, X2, X3);
        X0 ^= wKey[116];
        X1 ^= wKey[117];
        X2 ^= wKey[118];
        X3 ^= wKey[119];
        inverseLT();
        ib4(X0, X1, X2, X3);
        X0 ^= wKey[112];
        X1 ^= wKey[113];
        X2 ^= wKey[114];
        X3 ^= wKey[115];
        inverseLT();
        ib3(X0, X1, X2, X3);
        X0 ^= wKey[108];
        X1 ^= wKey[109];
        X2 ^= wKey[110];
        X3 ^= wKey[111];
        inverseLT();
        ib2(X0, X1, X2, X3);
        X0 ^= wKey[104];
        X1 ^= wKey[105];
        X2 ^= wKey[106];
        X3 ^= wKey[107];
        inverseLT();
        ib1(X0, X1, X2, X3);
        X0 ^= wKey[100];
        X1 ^= wKey[101];
        X2 ^= wKey[102];
        X3 ^= wKey[103];
        inverseLT();
        ib0(X0, X1, X2, X3);
        X0 ^= wKey[96];
        X1 ^= wKey[97];
        X2 ^= wKey[98];
        X3 ^= wKey[99];
        inverseLT();
        ib7(X0, X1, X2, X3);
        X0 ^= wKey[92];
        X1 ^= wKey[93];
        X2 ^= wKey[94];
        X3 ^= wKey[95];
        inverseLT();
        ib6(X0, X1, X2, X3);
        X0 ^= wKey[88];
        X1 ^= wKey[89];
        X2 ^= wKey[90];
        X3 ^= wKey[91];
        inverseLT();
        ib5(X0, X1, X2, X3);
        X0 ^= wKey[84];
        X1 ^= wKey[85];
        X2 ^= wKey[86];
        X3 ^= wKey[87];
        inverseLT();
        ib4(X0, X1, X2, X3);
        X0 ^= wKey[80];
        X1 ^= wKey[81];
        X2 ^= wKey[82];
        X3 ^= wKey[83];
        inverseLT();
        ib3(X0, X1, X2, X3);
        X0 ^= wKey[76];
        X1 ^= wKey[77];
        X2 ^= wKey[78];
        X3 ^= wKey[79];
        inverseLT();
        ib2(X0, X1, X2, X3);
        X0 ^= wKey[72];
        X1 ^= wKey[73];
        X2 ^= wKey[74];
        X3 ^= wKey[75];
        inverseLT();
        ib1(X0, X1, X2, X3);
        X0 ^= wKey[68];
        X1 ^= wKey[69];
        X2 ^= wKey[70];
        X3 ^= wKey[71];
        inverseLT();
        ib0(X0, X1, X2, X3);
        X0 ^= wKey[64];
        X1 ^= wKey[65];
        X2 ^= wKey[66];
        X3 ^= wKey[67];
        inverseLT();
        ib7(X0, X1, X2, X3);
        X0 ^= wKey[60];
        X1 ^= wKey[61];
        X2 ^= wKey[62];
        X3 ^= wKey[63];
        inverseLT();
        ib6(X0, X1, X2, X3);
        X0 ^= wKey[56];
        X1 ^= wKey[57];
        X2 ^= wKey[58];
        X3 ^= wKey[59];
        inverseLT();
        ib5(X0, X1, X2, X3);
        X0 ^= wKey[52];
        X1 ^= wKey[53];
        X2 ^= wKey[54];
        X3 ^= wKey[55];
        inverseLT();
        ib4(X0, X1, X2, X3);
        X0 ^= wKey[48];
        X1 ^= wKey[49];
        X2 ^= wKey[50];
        X3 ^= wKey[51];
        inverseLT();
        ib3(X0, X1, X2, X3);
        X0 ^= wKey[44];
        X1 ^= wKey[45];
        X2 ^= wKey[46];
        X3 ^= wKey[47];
        inverseLT();
        ib2(X0, X1, X2, X3);
        X0 ^= wKey[40];
        X1 ^= wKey[41];
        X2 ^= wKey[42];
        X3 ^= wKey[43];
        inverseLT();
        ib1(X0, X1, X2, X3);
        X0 ^= wKey[36];
        X1 ^= wKey[37];
        X2 ^= wKey[38];
        X3 ^= wKey[39];
        inverseLT();
        ib0(X0, X1, X2, X3);
        X0 ^= wKey[32];
        X1 ^= wKey[33];
        X2 ^= wKey[34];
        X3 ^= wKey[35];
        inverseLT();
        ib7(X0, X1, X2, X3);
        X0 ^= wKey[28];
        X1 ^= wKey[29];
        X2 ^= wKey[30];
        X3 ^= wKey[31];
        inverseLT();
        ib6(X0, X1, X2, X3);
        X0 ^= wKey[24];
        X1 ^= wKey[25];
        X2 ^= wKey[26];
        X3 ^= wKey[27];
        inverseLT();
        ib5(X0, X1, X2, X3);
        X0 ^= wKey[20];
        X1 ^= wKey[21];
        X2 ^= wKey[22];
        X3 ^= wKey[23];
        inverseLT();
        ib4(X0, X1, X2, X3);
        X0 ^= wKey[16];
        X1 ^= wKey[17];
        X2 ^= wKey[18];
        X3 ^= wKey[19];
        inverseLT();
        ib3(X0, X1, X2, X3);
        X0 ^= wKey[12];
        X1 ^= wKey[13];
        X2 ^= wKey[14];
        X3 ^= wKey[15];
        inverseLT();
        ib2(X0, X1, X2, X3);
        X0 ^= wKey[8];
        X1 ^= wKey[9];
        X2 ^= wKey[10];
        X3 ^= wKey[11];
        inverseLT();
        ib1(X0, X1, X2, X3);
        X0 ^= wKey[4];
        X1 ^= wKey[5];
        X2 ^= wKey[6];
        X3 ^= wKey[7];
        inverseLT();
        ib0(X0, X1, X2, X3);

        Pack.intToLittleEndian(X0 ^ wKey[0], output, outOff);
        Pack.intToLittleEndian(X1 ^ wKey[1], output, outOff + 4);
        Pack.intToLittleEndian(X2 ^ wKey[2], output, outOff + 8);
        Pack.intToLittleEndian(X3 ^ wKey[3], output, outOff + 12);
    }
}