org.bonej.wrapperPlugins.FractalDimensionWrapper.java Source code

Java tutorial

Introduction

Here is the source code for org.bonej.wrapperPlugins.FractalDimensionWrapper.java

Source

/*
BSD 2-Clause License
Copyright (c) 2018, Michael Doube, Richard Domander, Alessandro Felder
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

package org.bonej.wrapperPlugins;

import static org.bonej.wrapperPlugins.CommonMessages.NOT_BINARY;
import static org.bonej.wrapperPlugins.CommonMessages.NO_IMAGE_OPEN;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

import net.imagej.ImgPlus;
import net.imagej.ops.OpService;
import net.imagej.ops.Ops.Morphology.Outline;
import net.imagej.ops.Ops.Topology.BoxCount;
import net.imagej.ops.special.function.Functions;
import net.imagej.ops.special.function.UnaryFunctionOp;
import net.imagej.ops.special.hybrid.BinaryHybridCF;
import net.imagej.ops.special.hybrid.Hybrids;
import net.imglib2.RandomAccessibleInterval;
import net.imglib2.type.NativeType;
import net.imglib2.type.logic.BitType;
import net.imglib2.type.numeric.RealType;
import net.imglib2.type.numeric.real.DoubleType;
import net.imglib2.util.ValuePair;

import org.apache.commons.math3.fitting.PolynomialCurveFitter;
import org.apache.commons.math3.fitting.WeightedObservedPoints;
import org.apache.commons.math3.stat.regression.SimpleRegression;
import org.bonej.utilities.ElementUtil;
import org.bonej.utilities.SharedTable;
import org.bonej.wrapperPlugins.wrapperUtils.Common;
import org.bonej.wrapperPlugins.wrapperUtils.HyperstackUtils;
import org.bonej.wrapperPlugins.wrapperUtils.HyperstackUtils.Subspace;
import org.bonej.wrapperPlugins.wrapperUtils.UsageReporter;
import org.scijava.ItemIO;
import org.scijava.ItemVisibility;
import org.scijava.app.StatusService;
import org.scijava.command.Command;
import org.scijava.command.CommandService;
import org.scijava.command.ContextCommand;
import org.scijava.plugin.Parameter;
import org.scijava.plugin.Plugin;
import org.scijava.plugin.PluginService;
import org.scijava.prefs.PrefService;
import org.scijava.table.DefaultColumn;
import org.scijava.table.DefaultGenericTable;
import org.scijava.table.DoubleColumn;
import org.scijava.table.GenericTable;
import org.scijava.table.Table;
import org.scijava.widget.NumberWidget;

/**
 * This command estimates the fractal dimension of a binary image with the
 * box-counting algorithm. Boxes of diminishing size are scanned over the image
 * and the number of boxes of each size containing foreground (bone) is counted.
 * As the box size decreases, the proportion of boxes containing foreground
 * increases in a fractal structure.
 * <p>
 * The command returns a table of fractal dimension and R values. Fractal
 * dimension is the slope of a linear line fit to (-log(size), log(count))
 * points returned by the box count algorithm. R is the goodness of the fit of
 * the linear line. Optionally the points are also returned in separate
 * table(s).
 * </p>
 *
 * @author Richard Domander
 */
@Plugin(type = Command.class, menuPath = "Plugins>BoneJ>Fractal dimension")
public class FractalDimensionWrapper<T extends RealType<T> & NativeType<T>> extends ContextCommand {

    @Parameter(validater = "validateImage")
    private ImgPlus<T> inputImage;

    @Parameter(label = "Starting box size (px)", description = "The size of the sampling boxes in the first iteration", min = "1", callback = "enforceValidSizes", style = NumberWidget.SPINNER_STYLE)
    private long startBoxSize = 48;

    @Parameter(label = "Smallest box size (px)", description = "Sampling box size where algorithm stops", min = "1", callback = "enforceValidSizes", style = NumberWidget.SPINNER_STYLE)
    private long smallestBoxSize = 6;

    @Parameter(label = "Box scaling factor", description = "The scale down factor of the box size after each step", min = "1.001", stepSize = "0.01", callback = "enforceAutoParam", style = NumberWidget.SPINNER_STYLE)
    private double scaleFactor = 1.2;

    @Parameter(label = "Grid translations", description = "How many times box grid is moved to find the best fit", min = "0", style = NumberWidget.SPINNER_STYLE, callback = "enforceAutoParam", required = false)
    private long translations;

    @Parameter(visibility = ItemVisibility.MESSAGE)
    private String translationInfo = "NB: translations affect runtime significantly";

    @Parameter(label = "Automatic parameters", description = "Let the computer decide values for the parameters", required = false, callback = "enforceAutoParam", persist = false, initializer = "initAutoParam")
    private boolean autoParam;

    @Parameter(label = "Show points", description = "Show (log(size), -log(count)) points", required = false)
    private boolean showPoints;

    /**
     * The fractal dimension and R values for each 3D subspace in a table
     * <p>
     * Null if there are no results
     * </p>
     */
    @Parameter(type = ItemIO.OUTPUT, label = "BoneJ results")
    private Table<DefaultColumn<Double>, Double> resultsTable;

    /**
     * Tables containing the (-log(size), log(count)) points for each 3D subspace
     */
    @Parameter(type = ItemIO.OUTPUT, label = "Subspace points")
    private List<GenericTable> subspaceTables;

    @Parameter
    private OpService opService;
    @Parameter
    private StatusService statusService;
    @Parameter
    private PrefService prefs;
    @Parameter
    private PluginService pluginService;
    @Parameter
    private CommandService commandService;

    private BinaryHybridCF<RandomAccessibleInterval<BitType>, Boolean, RandomAccessibleInterval<BitType>> hollowOp;
    private UnaryFunctionOp<RandomAccessibleInterval<BitType>, List<ValuePair<DoubleType, DoubleType>>> boxCountOp;
    private long autoMax;
    private static UsageReporter reporter;

    @Override
    public void run() {
        statusService.showStatus("Fractal dimension: initialising");
        final ImgPlus<BitType> bitImgPlus = Common.toBitTypeImgPlus(opService, inputImage);
        matchOps(bitImgPlus);
        final List<Subspace<BitType>> subspaces = HyperstackUtils.split3DSubspaces(bitImgPlus)
                .collect(Collectors.toList());
        final List<Double> dimensions = new ArrayList<>();
        final List<Double> rSquared = new ArrayList<>();
        subspaceTables = new ArrayList<>();
        subspaces.forEach(subspace -> {
            final RandomAccessibleInterval<BitType> interval = subspace.interval;
            statusService.showProgress(0, 3);
            statusService.showStatus("Fractal dimension: hollowing bone");
            final RandomAccessibleInterval<BitType> outlines = hollowOp.calculate(interval);
            statusService.showProgress(1, 3);
            statusService.showStatus("Fractal dimension: counting boxes");
            final List<ValuePair<DoubleType, DoubleType>> pairs = boxCountOp.calculate(outlines);
            statusService.showProgress(2, 3);
            statusService.showStatus("Fractal dimension: fitting curve");
            dimensions.add(fitCurve(pairs)[1]);
            rSquared.add(getRSquared(pairs));
            if (showPoints) {
                addSubspaceTable(subspace, pairs);
            }
            statusService.showProgress(3, 3);
        });
        fillResultsTable(subspaces, dimensions, rSquared);
        if (SharedTable.hasData()) {
            resultsTable = SharedTable.getTable();
        }
        if (reporter == null) {
            reporter = UsageReporter.getInstance(prefs, pluginService, commandService);
        }
        reporter.reportEvent(getClass().getName());
    }

    static void setReporter(final UsageReporter reporter) {
        if (reporter == null) {
            throw new NullPointerException("Reporter cannot be null");
        }
        FractalDimensionWrapper.reporter = reporter;
    }

    // region -- Helper methods --

    private void addSubspaceTable(final Subspace<BitType> subspace,
            final Collection<ValuePair<DoubleType, DoubleType>> pairs) {
        final String label = inputImage.getName() + " " + subspace;
        final DoubleColumn xColumn = new DoubleColumn("-log(size)");
        final DoubleColumn yColumn = new DoubleColumn("log(count)");
        pairs.stream().map(p -> p.a.get()).forEach(xColumn::add);
        pairs.stream().map(p -> p.b.get()).forEach(yColumn::add);
        final GenericTable subspaceTable = new DefaultGenericTable();
        subspaceTable.add(xColumn);
        subspaceTable.add(yColumn);
        for (int i = 0; i < subspaceTable.getRowCount(); i++) {
            subspaceTable.setRowHeader(i, label);
        }
        subspaceTables.add(subspaceTable);
    }

    private boolean allValuesFinite(final Collection<ValuePair<DoubleType, DoubleType>> pairs) {
        final Stream<Double> xValues = pairs.stream().map(p -> p.a.get());
        final Stream<Double> yValues = pairs.stream().map(p -> p.b.get());
        return Stream.concat(xValues, yValues).allMatch(Double::isFinite);
    }

    private void enforceAutoParam() {
        if (!autoParam) {
            return;
        }
        startBoxSize = autoMax;
        smallestBoxSize = Math.min(startBoxSize, 6L);
        scaleFactor = 1.2;
        translations = 0;
    }

    @SuppressWarnings("unused")
    private void enforceValidSizes() {
        if (smallestBoxSize > startBoxSize) {
            smallestBoxSize = startBoxSize;
        }
        enforceAutoParam();
    }

    private void fillResultsTable(final List<Subspace<BitType>> subspaces, final List<Double> fractalDimensions,
            final List<Double> rSquared) {
        final String imageName = inputImage.getName();
        final int results = fractalDimensions.size();
        for (int i = 0; i < results; i++) {
            final String suffix = subspaces.get(i).toString();
            final String label = suffix.isEmpty() ? imageName : imageName + " " + suffix;
            SharedTable.add(label, "Fractal dimension", fractalDimensions.get(i));
            SharedTable.add(label, "R", rSquared.get(i));
        }
    }

    private double[] fitCurve(final Collection<ValuePair<DoubleType, DoubleType>> pairs) {
        if (!allValuesFinite(pairs)) {
            return new double[2];
        }
        final WeightedObservedPoints points = toWeightedObservedPoints(pairs);
        final PolynomialCurveFitter curveFitter = PolynomialCurveFitter.create(1);
        return curveFitter.fit(points.toList());
    }

    private double getRSquared(final Iterable<ValuePair<DoubleType, DoubleType>> pairs) {
        final SimpleRegression regression = new SimpleRegression();
        pairs.forEach(pair -> regression.addData(pair.a.get(), pair.b.get()));
        return regression.getRSquare();
    }

    @SuppressWarnings("unused")
    private void initAutoParam() {
        if (inputImage == null) {
            return;
        }
        final long[] dimensions = new long[inputImage.numDimensions()];
        inputImage.dimensions(dimensions);
        final long maxDimension = Arrays.stream(dimensions).max().orElse(0);
        autoMax = maxDimension / 4;
    }

    @SuppressWarnings("unchecked")
    private void matchOps(final RandomAccessibleInterval<BitType> input) {
        hollowOp = (BinaryHybridCF) Hybrids.binaryCF(opService, Outline.class, RandomAccessibleInterval.class,
                input, true);
        boxCountOp = (UnaryFunctionOp) Functions.unary(opService, BoxCount.class, List.class, input, startBoxSize,
                smallestBoxSize, scaleFactor, translations);
    }

    private WeightedObservedPoints toWeightedObservedPoints(
            final Iterable<ValuePair<DoubleType, DoubleType>> pairs) {
        final WeightedObservedPoints points = new WeightedObservedPoints();
        pairs.forEach(pair -> points.add(pair.a.get(), pair.b.get()));
        return points;
    }

    @SuppressWarnings("unused")
    private void validateImage() {
        if (inputImage == null) {
            cancel(NO_IMAGE_OPEN);
            return;
        }
        if (!ElementUtil.isBinary(inputImage)) {
            cancel(NOT_BINARY);
        }
    }

    // endregion
}