org.avenir.reinforce.RandomFirstGreedyBandit.java Source code

Java tutorial

Introduction

Here is the source code for org.avenir.reinforce.RandomFirstGreedyBandit.java

Source

/*
 * avenir: Predictive analytic based on Hadoop Map Reduce
 * Author: Pranab Ghosh
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License. You may
 * obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0 
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

package org.avenir.reinforce;

import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.chombo.util.SecondarySort;
import org.chombo.util.Tuple;
import org.chombo.util.Utility;

/**
 * Random first greedy later bandit reinforcement learning
 * @author pranab
 *
 */
public class RandomFirstGreedyBandit extends Configured implements Tool {

    @Override
    public int run(String[] args) throws Exception {
        Job job = new Job(getConf());
        String jobName = "Random first greedy  bandit problem";
        job.setJobName(jobName);

        job.setJarByClass(RandomFirstGreedyBandit.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        Utility.setConfiguration(job.getConfiguration(), "avenir");
        job.setMapperClass(RandomFirstGreedyBandit.BanditMapper.class);
        job.setReducerClass(RandomFirstGreedyBandit.BanditReducer.class);

        job.setMapOutputKeyClass(Tuple.class);
        job.setMapOutputValueClass(Text.class);

        job.setGroupingComparatorClass(SecondarySort.TuplePairGroupComprator.class);
        job.setPartitionerClass(SecondarySort.TupleTextPartitioner.class);

        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(Text.class);

        job.setNumReduceTasks(job.getConfiguration().getInt("num.reducer", 1));

        int status = job.waitForCompletion(true) ? 0 : 1;
        return status;
    }

    /**
     * @author pranab
     *
     */
    public static class BanditMapper extends Mapper<LongWritable, Text, Tuple, Text> {
        private String fieldDelimRegex;
        private String[] items;
        private Text outVal = new Text();
        private Tuple outKey = new Tuple();
        private int roundNum;
        private int explorationCountFactor;
        private int rank;
        private final int RANK_MAX = 1000;
        private Map<String, ExplorationCounter> explCounters = new HashMap<String, ExplorationCounter>();
        private String curGroupID = null;
        private String groupID;
        private ExplorationCounter curExplCounter;
        private int curItemIndex = 0;
        private String explCountStrategy;
        private static final String EXPL_STRATEGY_SIMPLE = "simple";
        private static final String EXPL_STRATEGY_PAC = "pac";
        private float rewardDiff;
        private float probDiff;

        /* (non-Javadoc)
         * @see org.apache.hadoop.mapreduce.Mapper#setup(org.apache.hadoop.mapreduce.Mapper.Context)
         */
        protected void setup(Context context) throws IOException, InterruptedException {
            Configuration conf = context.getConfiguration();
            fieldDelimRegex = conf.get("field.delim.regex", ",");
            roundNum = conf.getInt("current.round.num", 2);
            explCountStrategy = conf.get("exploration.count.strategy", EXPL_STRATEGY_SIMPLE);
            if (explCountStrategy.equals(EXPL_STRATEGY_SIMPLE)) {
                explorationCountFactor = conf.getInt("exploration.count.factor", 2);
            } else {
                rewardDiff = conf.getFloat("pac.reward.diff", (float) 0.2);
                probDiff = conf.getFloat("pac.prob.diff", (float) 0.2);
            }
            List<String[]> lines = Utility.parseFileLines(conf, "group.item.count.path", ",");

            String groupID;
            int count;
            int explorationCount;
            int batchSize;
            for (String[] line : lines) {
                groupID = line[0];
                count = Integer.parseInt(line[1]);
                batchSize = Integer.parseInt(line[2]);
                explorationCount = getExplorationCount(count);
                explCounters.put(groupID, new ExplorationCounter(groupID, count, explorationCount, batchSize));
            }

        }

        /**
         * calculates exploration count
         * @param itemCount
         * @return
         */
        private int getExplorationCount(int itemCount) {
            int explCount = 0;
            if (explCountStrategy.equals(EXPL_STRATEGY_SIMPLE)) {
                explCount = explorationCountFactor * itemCount;
            } else {
                explCount = (int) (4.0 / (rewardDiff * rewardDiff) + Math.log(2.0 * itemCount / probDiff));
            }

            return explCount;
        }

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            items = value.toString().split(fieldDelimRegex);
            groupID = items[0];
            if (null == curGroupID || !groupID.equals(curGroupID)) {
                //new group
                curExplCounter = explCounters.get(groupID);
                curExplCounter.selectNextRound(roundNum);
                curGroupID = groupID;
                curItemIndex = 0;
            } else {
                //same group
                ++curItemIndex;
            }

            outKey.initialize();
            if (curExplCounter.isInExploration()) {
                //exploration
                if (curExplCounter.shouldExplore(curItemIndex)) {
                    rank = 1;
                } else {
                    rank = -1;
                }
            } else {
                //exploitation
                if (items.length > 2) {
                    rank = RANK_MAX - Integer.parseInt(items[2]);
                } else {
                    rank = -1;
                }
            }

            //emit if current item needs exploration or current items needs to be exploited and reawrd data is available
            if (rank > 0) {
                if (0 == curItemIndex) {
                    //if new group emit batch size
                    outKey.add(items[0], -1);
                    outVal.set("" + curExplCounter.getBatchSize());
                    context.write(outKey, outVal);
                    outKey.initialize();
                }

                //emit rank
                outKey.add(items[0], rank);
                outVal.set(items[1]);
                context.write(outKey, outVal);
            }
        }

    }

    /**
     * @author pranab
     *
     */
    public static class BanditReducer extends Reducer<Tuple, Text, NullWritable, Text> {
        private Text valOut;
        private String fieldDelim;

        /* (non-Javadoc)
         * @see org.apache.hadoop.mapreduce.Reducer#setup(org.apache.hadoop.mapreduce.Reducer.Context)
         */
        protected void setup(Context context) throws IOException, InterruptedException {
            Configuration conf = context.getConfiguration();
            fieldDelim = conf.get("field.delim", ",");
        }

        /* (non-Javadoc)
         * @see org.apache.hadoop.mapreduce.Reducer#reduce(KEYIN, java.lang.Iterable, org.apache.hadoop.mapreduce.Reducer.Context)
         */
        protected void reduce(Tuple key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {
            boolean first = true;
            String val = null;
            int batchCount = 0;
            int batchSize = 0;
            String groupID = key.getString(0);
            for (Text value : values) {
                if (first) {
                    //first one is batch size
                    val = value.toString();
                    batchSize = Integer.parseInt(val);
                    first = false;
                } else {
                    //select as many as batch size
                    val = value.toString();
                    valOut.set(groupID + fieldDelim + val);
                    context.write(NullWritable.get(), valOut);
                    if (++batchCount == batchSize) {
                        break;
                    }
                }
            }
        }
    }

    public static void main(String[] args) throws Exception {
        int exitCode = ToolRunner.run(new RandomFirstGreedyBandit(), args);
        System.exit(exitCode);
    }

}