org.apache.sysml.runtime.matrix.CMCOVMR.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.sysml.runtime.matrix.CMCOVMR.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.apache.sysml.runtime.matrix;

import java.util.HashSet;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.RunningJob;
import org.apache.sysml.conf.ConfigurationManager;
import org.apache.sysml.conf.DMLConfig;
import org.apache.sysml.runtime.instructions.MRJobInstruction;
import org.apache.sysml.runtime.matrix.data.CM_N_COVCell;
import org.apache.sysml.runtime.matrix.data.InputInfo;
import org.apache.sysml.runtime.matrix.data.OutputInfo;
import org.apache.sysml.runtime.matrix.data.TaggedFirstSecondIndexes;
import org.apache.sysml.runtime.matrix.mapred.CMCOVMRMapper;
import org.apache.sysml.runtime.matrix.mapred.CMCOVMRReducer;
import org.apache.sysml.runtime.matrix.mapred.MRConfigurationNames;
import org.apache.sysml.runtime.matrix.mapred.MRJobConfiguration;
import org.apache.sysml.runtime.matrix.mapred.MRJobConfiguration.ConvertTarget;

public class CMCOVMR {
    private static final Log LOG = LogFactory.getLog(CMCOVMR.class.getName());

    private CMCOVMR() {
        //prevent instantiation via private constructor
    }

    public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
            long[] clens, int[] brlens, int[] bclens, String instructionsInMapper, String cmNcomInstructions,
            int numReducers, int replication, byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos)
            throws Exception {
        JobConf job = new JobConf(CMCOVMR.class);
        job.setJobName("CM-COV-MR");

        //whether use block representation or cell representation
        MRJobConfiguration.setMatrixValueClassForCM_N_COM(job, true);

        //added for handling recordreader instruction
        String[] realinputs = inputs;
        InputInfo[] realinputInfos = inputInfos;
        long[] realrlens = rlens;
        long[] realclens = clens;
        int[] realbrlens = brlens;
        int[] realbclens = bclens;
        byte[] realIndexes = new byte[inputs.length];
        for (byte b = 0; b < realIndexes.length; b++)
            realIndexes[b] = b;

        //set up the input files and their format information
        MRJobConfiguration.setUpMultipleInputs(job, realIndexes, realinputs, realinputInfos, realbrlens, realbclens,
                true, ConvertTarget.WEIGHTEDCELL);

        //set up the dimensions of input matrices
        MRJobConfiguration.setMatricesDimensions(job, realIndexes, realrlens, realclens);

        //set up the block size
        MRJobConfiguration.setBlocksSizes(job, realIndexes, realbrlens, realbclens);

        //set up unary instructions that will perform in the mapper
        MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

        //set up the aggregate instructions that will happen in the combiner and reducer
        MRJobConfiguration.setCM_N_COMInstructions(job, cmNcomInstructions);

        //set up the replication factor for the results
        job.setInt(MRConfigurationNames.DFS_REPLICATION, replication);

        //set up custom map/reduce configurations 
        DMLConfig config = ConfigurationManager.getDMLConfig();
        MRJobConfiguration.setupCustomMRConfigurations(job, config);

        //set up what matrices are needed to pass from the mapper to reducer
        HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
                instructionsInMapper, null, cmNcomInstructions, resultIndexes);

        //set up the multiple output files, and their format information
        MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, new byte[resultIndexes.length], outputs,
                outputInfos, false);

        // configure mapper and the mapper output key value pairs
        job.setMapperClass(CMCOVMRMapper.class);

        job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class);
        job.setMapOutputValueClass(CM_N_COVCell.class);
        job.setOutputKeyComparatorClass(TaggedFirstSecondIndexes.Comparator.class);
        job.setPartitionerClass(TaggedFirstSecondIndexes.TagPartitioner.class);

        //configure reducer
        job.setReducerClass(CMCOVMRReducer.class);
        //job.setReducerClass(PassThroughReducer.class);

        MatrixCharacteristics[] stats = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
                instructionsInMapper, null, null, cmNcomInstructions, resultIndexes, mapoutputIndexes, false).stats;

        //set up the number of reducers
        MRJobConfiguration.setNumReducers(job, mapoutputIndexes.size(), numReducers);//each output tag is a group

        // Print the complete instruction
        if (LOG.isTraceEnabled())
            inst.printCompleteMRJobInstruction(stats);

        // By default, the job executes in "cluster" mode.
        // Determine if we can optimize and run it in "local" mode.
        MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
        for (int i = 0; i < inputs.length; i++) {
            inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
        }

        //set unique working dir
        MRJobConfiguration.setUniqueWorkingDir(job);

        RunningJob runjob = JobClient.runJob(job);

        return new JobReturn(stats, outputInfos, runjob.isSuccessful());
    }

}