org.apache.sysml.runtime.io.MatrixReader.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.sysml.runtime.io.MatrixReader.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.apache.sysml.runtime.io;

import java.io.EOFException;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.sysml.hops.OptimizerUtils;
import org.apache.sysml.runtime.DMLRuntimeException;
import org.apache.sysml.runtime.matrix.data.MatrixBlock;
import org.apache.sysml.runtime.matrix.data.SparseBlock;
import org.apache.sysml.runtime.matrix.data.SparseBlockMCSR;
import org.apache.sysml.runtime.util.MapReduceTool;

/**
 * Base class for all format-specific matrix readers. Every reader is required to implement the basic 
 * read functionality but might provide additional custom functionality. Any non-default parameters
 * (e.g., CSV read properties) should be passed into custom constructors. There is also a factory
 * for creating format-specific readers. 
 * 
 */
public abstract class MatrixReader {
    protected static final Log LOG = LogFactory.getLog(MatrixReader.class.getName());

    //internal configuration
    protected static final boolean AGGREGATE_BLOCK_NNZ = true;
    protected static final boolean RETURN_EMPTY_NNZ0 = true;

    public abstract MatrixBlock readMatrixFromHDFS(String fname, long rlen, long clen, int brlen, int bclen,
            long estnnz) throws IOException, DMLRuntimeException;

    public abstract MatrixBlock readMatrixFromInputStream(InputStream is, long rlen, long clen, int brlen,
            int bclen, long estnnz) throws IOException, DMLRuntimeException;

    /**
     * NOTE: mallocDense controls if the output matrix blocks is fully allocated, this can be redundant
     * if binary block read and single block. 
     * 
     * @param rlen number of rows
     * @param clen number of columns
     * @param bclen number of columns in a block
     * @param brlen number of rows in a block
     * @param estnnz estimated number of non-zeros
     * @param mallocDense if true and not sparse, allocate dense block unsafe
     * @param mallocSparse if true and sparse, allocate sparse rows block
     * @return matrix block
     * @throws IOException if IOException occurs
     */
    protected static MatrixBlock createOutputMatrixBlock(long rlen, long clen, int bclen, int brlen, long estnnz,
            boolean mallocDense, boolean mallocSparse) throws IOException {
        //check input dimension
        if (!OptimizerUtils.isValidCPDimensions(rlen, clen))
            throw new DMLRuntimeException("Matrix dimensions too large for CP runtime: " + rlen + " x " + clen);

        //determine target representation (sparse/dense)
        boolean sparse = MatrixBlock.evalSparseFormatInMemory(rlen, clen, estnnz);
        int numThreads = OptimizerUtils.getParallelBinaryReadParallelism();
        long numBlocks = (long) Math.ceil((double) rlen / brlen);

        //prepare result matrix block
        MatrixBlock ret = new MatrixBlock((int) rlen, (int) clen, sparse, estnnz);
        if (!sparse && mallocDense)
            ret.allocateDenseBlockUnsafe((int) rlen, (int) clen);
        else if (sparse && mallocSparse) {
            ret.allocateSparseRowsBlock();
            SparseBlock sblock = ret.getSparseBlock();
            //create synchronization points for MCSR (start row per block row)
            if (sblock instanceof SparseBlockMCSR && clen > bclen //multiple col blocks 
                    && clen >= 0 && bclen > 0 && rlen >= 0 && brlen > 0) { //all dims known
                //note: allocate w/ min 2 nnz to ensure allocated row object because
                //adaptive change from scalar to row could cause synchronization issues
                if (numThreads <= numBlocks)
                    for (int i = 0; i < rlen; i += brlen)
                        sblock.allocate(i, Math.max((int) (estnnz / rlen), 2), (int) clen);
                else //allocate all rows to avoid contention
                    for (int i = 0; i < rlen; i++)
                        sblock.allocate(i, Math.max((int) (estnnz / rlen), 2), (int) clen);
            }
        }

        return ret;
    }

    protected static void checkValidInputFile(FileSystem fs, Path path) throws IOException {
        //check non-existing file
        if (!fs.exists(path))
            throw new IOException("File " + path.toString() + " does not exist on HDFS/LFS.");

        //check for empty file
        if (MapReduceTool.isFileEmpty(fs, path))
            throw new EOFException("Empty input file " + path.toString() + ".");

    }

    protected static void sortSparseRowsParallel(MatrixBlock dest, long rlen, int k, ExecutorService pool)
            throws InterruptedException, ExecutionException {
        //create sort tasks (increase number of tasks for better load balance)
        ArrayList<SortRowsTask> tasks = new ArrayList<>();
        int k2 = (int) Math.min(8 * k, rlen);
        int blklen = (int) (Math.ceil((double) rlen / k2));
        for (int i = 0; i < k2 & i * blklen < rlen; i++)
            tasks.add(new SortRowsTask(dest, i * blklen, Math.min((i + 1) * blklen, (int) rlen)));

        //execute parallel sort and check for errors
        List<Future<Object>> rt2 = pool.invokeAll(tasks);
        for (Future<Object> task : rt2)
            task.get(); //error handling
    }

    /**
     * Utility task for sorting sparse rows as potentially required
     * by different parallel readers.
     */
    private static class SortRowsTask implements Callable<Object> {
        private MatrixBlock _dest = null;
        private int _rl = -1;
        private int _ru = -1;

        public SortRowsTask(MatrixBlock dest, int rl, int ru) {
            _dest = dest;
            _rl = rl;
            _ru = ru;
        }

        @Override
        public Object call() throws Exception {
            SparseBlock sblock = _dest.getSparseBlock();
            if (sblock != null)
                for (int i = _rl; i < _ru; i++)
                    if (!sblock.isEmpty(i))
                        sblock.sort(i);
            return null;
        }
    }
}