org.apache.sysml.runtime.controlprogram.parfor.DataPartitionerRemoteMR.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.sysml.runtime.controlprogram.parfor.DataPartitionerRemoteMR.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.apache.sysml.runtime.controlprogram.parfor;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.lib.NullOutputFormat;
import org.apache.sysml.api.DMLScript;
import org.apache.sysml.conf.ConfigurationManager;
import org.apache.sysml.conf.DMLConfig;
import org.apache.sysml.runtime.DMLRuntimeException;
import org.apache.sysml.runtime.controlprogram.ParForProgramBlock.PDataPartitionFormat;
import org.apache.sysml.runtime.controlprogram.ParForProgramBlock.PartitionFormat;
import org.apache.sysml.runtime.controlprogram.caching.MatrixObject;
import org.apache.sysml.runtime.controlprogram.parfor.util.PairWritableBlock;
import org.apache.sysml.runtime.controlprogram.parfor.util.PairWritableCell;
import org.apache.sysml.runtime.matrix.data.InputInfo;
import org.apache.sysml.runtime.matrix.data.OutputInfo;
import org.apache.sysml.runtime.matrix.mapred.MRConfigurationNames;
import org.apache.sysml.runtime.matrix.mapred.MRJobConfiguration;
import org.apache.sysml.runtime.util.MapReduceTool;
import org.apache.sysml.utils.Statistics;
import org.apache.sysml.yarn.DMLAppMasterUtils;

/**
 * MR job class for submitting parfor remote partitioning MR jobs.
 *
 */
public class DataPartitionerRemoteMR extends DataPartitioner {
    private long _pfid = -1;
    private int _numReducers = -1;
    private int _replication = -1;
    private boolean _jvmReuse = false;
    private boolean _keepIndexes = false;

    public DataPartitionerRemoteMR(PartitionFormat dpf, long pfid, int numRed, int replication, boolean jvmReuse,
            boolean keepIndexes) {
        super(dpf._dpf, dpf._N);

        _pfid = pfid;
        _numReducers = numRed;
        _replication = replication;
        _jvmReuse = jvmReuse;
        _keepIndexes = keepIndexes;
    }

    @Override
    protected void partitionMatrix(MatrixObject in, String fnameNew, InputInfo ii, OutputInfo oi, long rlen,
            long clen, int brlen, int bclen) throws DMLRuntimeException {
        String jobname = "ParFor-DPMR";
        long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0;

        JobConf job;
        job = new JobConf(DataPartitionerRemoteMR.class);
        if (_pfid >= 0) //use in parfor
            job.setJobName(jobname + _pfid);
        else //use for partition instruction
            job.setJobName("Partition-MR");

        //maintain dml script counters
        Statistics.incrementNoOfCompiledMRJobs();

        try {
            //force writing to disk (typically not required since partitioning only applied if dataset exceeds CP size)
            in.exportData(); //written to disk iff dirty

            Path path = new Path(in.getFileName());

            /////
            //configure the MR job
            MRJobConfiguration.setPartitioningInfo(job, rlen, clen, brlen, bclen, ii, oi, _format, _n, fnameNew,
                    _keepIndexes);

            //set mappers, reducers, combiners
            job.setMapperClass(DataPartitionerRemoteMapper.class);
            job.setReducerClass(DataPartitionerRemoteReducer.class);

            if (oi == OutputInfo.TextCellOutputInfo) {
                //binary cell intermediates for reduced IO 
                job.setMapOutputKeyClass(LongWritable.class);
                job.setMapOutputValueClass(PairWritableCell.class);
            } else if (oi == OutputInfo.BinaryCellOutputInfo) {
                job.setMapOutputKeyClass(LongWritable.class);
                job.setMapOutputValueClass(PairWritableCell.class);
            } else if (oi == OutputInfo.BinaryBlockOutputInfo) {
                job.setMapOutputKeyClass(LongWritable.class);
                job.setMapOutputValueClass(PairWritableBlock.class);

                //check Alignment
                if ((_format == PDataPartitionFormat.ROW_BLOCK_WISE_N && rlen > _n && _n % brlen != 0)
                        || (_format == PDataPartitionFormat.COLUMN_BLOCK_WISE_N && clen > _n && _n % bclen != 0)) {
                    throw new DMLRuntimeException(
                            "Data partitioning format " + _format + " requires aligned blocks.");
                }
            }

            //set input format 
            job.setInputFormat(ii.inputFormatClass);

            //set the input path and output path 
            FileInputFormat.setInputPaths(job, path);

            //set output path
            MapReduceTool.deleteFileIfExistOnHDFS(fnameNew);
            //FileOutputFormat.setOutputPath(job, pathNew);
            job.setOutputFormat(NullOutputFormat.class);

            //////
            //set optimization parameters

            //set the number of mappers and reducers 
            //job.setNumMapTasks( _numMappers ); //use default num mappers
            long reducerGroups = -1;
            switch (_format) {
            case ROW_WISE:
                reducerGroups = rlen;
                break;
            case COLUMN_WISE:
                reducerGroups = clen;
                break;
            case ROW_BLOCK_WISE:
                reducerGroups = (rlen / brlen) + ((rlen % brlen == 0) ? 0 : 1);
                break;
            case COLUMN_BLOCK_WISE:
                reducerGroups = (clen / bclen) + ((clen % bclen == 0) ? 0 : 1);
                break;
            case ROW_BLOCK_WISE_N:
                reducerGroups = (rlen / _n) + ((rlen % _n == 0) ? 0 : 1);
                break;
            case COLUMN_BLOCK_WISE_N:
                reducerGroups = (clen / _n) + ((clen % _n == 0) ? 0 : 1);
                break;
            default:
                //do nothing
            }
            job.setNumReduceTasks((int) Math.min(_numReducers, reducerGroups));

            //disable automatic tasks timeouts and speculative task exec
            job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0);
            job.setMapSpeculativeExecution(false);

            //set up preferred custom serialization framework for binary block format
            if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
                MRJobConfiguration.addBinaryBlockSerializationFramework(job);

            //enables the reuse of JVMs (multiple tasks per MR task)
            if (_jvmReuse)
                job.setNumTasksToExecutePerJvm(-1); //unlimited

            //enables compression - not conclusive for different codecs (empirically good compression ratio, but significantly slower)
            //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS, "true");
            //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS_CODEC, "org.apache.hadoop.io.compress.GzipCodec");

            //set the replication factor for the results
            job.setInt(MRConfigurationNames.DFS_REPLICATION, _replication);

            //set up map/reduce memory configurations (if in AM context)
            DMLConfig config = ConfigurationManager.getDMLConfig();
            DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config);

            //set up custom map/reduce configurations 
            MRJobConfiguration.setupCustomMRConfigurations(job, config);

            //set the max number of retries per map task
            //  disabled job-level configuration to respect cluster configuration
            //  note: this refers to hadoop2, hence it never had effect on mr1
            //job.setInt(MRConfigurationNames.MR_MAP_MAXATTEMPTS, _max_retry);

            //set unique working dir
            MRJobConfiguration.setUniqueWorkingDir(job);

            /////
            // execute the MR job   
            JobClient.runJob(job);

            //maintain dml script counters
            Statistics.incrementNoOfExecutedMRJobs();
        } catch (Exception ex) {
            throw new DMLRuntimeException(ex);
        }

        if (DMLScript.STATISTICS && _pfid >= 0) {
            long t1 = System.nanoTime(); //only for parfor 
            Statistics.maintainCPHeavyHitters("MR-Job_" + jobname, t1 - t0);
        }
    }

}