Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.examples.streaming; import java.util.Arrays; import java.util.List; import java.util.regex.Pattern; import scala.Tuple2; import com.google.common.base.Optional; import com.google.common.collect.Lists; import org.apache.spark.HashPartitioner; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.StorageLevels; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.streaming.Durations; import org.apache.spark.streaming.api.java.JavaDStream; import org.apache.spark.streaming.api.java.JavaPairDStream; import org.apache.spark.streaming.api.java.JavaReceiverInputDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; /** * Counts words cumulatively in UTF8 encoded, '\n' delimited text received from the network every * second starting with initial value of word count. * Usage: JavaStatefulNetworkWordCount <hostname> <port> * <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive * data. * <p/> * To run this on your local machine, you need to first run a Netcat server * `$ nc -lk 9999` * and then run the example * `$ bin/run-example * org.apache.spark.examples.streaming.JavaStatefulNetworkWordCount localhost 9999` */ public class JavaStatefulNetworkWordCount { private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) { if (args.length < 2) { System.err.println("Usage: JavaStatefulNetworkWordCount <hostname> <port>"); System.exit(1); } StreamingExamples.setStreamingLogLevels(); // Update the cumulative count function final Function2<List<Integer>, Optional<Integer>, Optional<Integer>> updateFunction = new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() { @Override public Optional<Integer> call(List<Integer> values, Optional<Integer> state) { Integer newSum = state.or(0); for (Integer value : values) { newSum += value; } return Optional.of(newSum); } }; // Create the context with a 1 second batch size SparkConf sparkConf = new SparkConf().setAppName("JavaStatefulNetworkWordCount"); JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.seconds(1)); ssc.checkpoint("."); // Initial RDD input to updateStateByKey List<Tuple2<String, Integer>> tuples = Arrays.asList(new Tuple2<String, Integer>("hello", 1), new Tuple2<String, Integer>("world", 1)); JavaPairRDD<String, Integer> initialRDD = ssc.sc().parallelizePairs(tuples); JavaReceiverInputDStream<String> lines = ssc.socketTextStream(args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER_2); JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() { @Override public Iterable<String> call(String x) { return Lists.newArrayList(SPACE.split(x)); } }); JavaPairDStream<String, Integer> wordsDstream = words .mapToPair(new PairFunction<String, String, Integer>() { @Override public Tuple2<String, Integer> call(String s) { return new Tuple2<String, Integer>(s, 1); } }); // This will give a Dstream made of state (which is the cumulative count of the words) JavaPairDStream<String, Integer> stateDstream = wordsDstream.updateStateByKey(updateFunction, new HashPartitioner(ssc.sc().defaultParallelism()), initialRDD); stateDstream.print(); ssc.start(); ssc.awaitTermination(); } }