Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.examples; import com.google.common.collect.Iterables; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import scala.Tuple2; import java.util.ArrayList; import java.util.List; import java.util.regex.Pattern; /** * Computes the PageRank of URLs from an input file. Input file should * be in format of: * URL neighbor URL * URL neighbor URL * URL neighbor URL * ... * where URL and their neighbors are separated by space(s). */ public final class PageRank { private static final Pattern SPACES = Pattern.compile("\\s+"); public static void main(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: PageRank <file> <number_of_iterations>"); System.exit(1); } final SparkConf sparkConf = new SparkConf().setAppName("PageRank"); final JavaSparkContext ctx = new JavaSparkContext(sparkConf); // Loads in input file. It should be in format of: // URL neighbor URL // URL neighbor URL // URL neighbor URL // ... final JavaRDD<String> lines = ctx.textFile(args[0], 1); final int ITERATIONS = Integer.parseInt(args[1]); // Loads all URLs from input file and initialize their neighbors. final JavaPairRDD<String, Iterable<String>> links = lines.mapToPair(s -> { String[] parts = SPACES.split(s); return new Tuple2<>(parts[0], parts[1]); }).distinct().groupByKey().cache(); // Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one. JavaPairRDD<String, Double> ranks = links.mapValues(rs -> 1.0); // Calculates and updates URL ranks continuously using PageRank algorithm. for (int current = 0; current < ITERATIONS; current++) { // Calculates URL contributions to the rank of other URLs. JavaPairRDD<String, Double> contribs = links.join(ranks).values().flatMapToPair(s -> { int urlCount = Iterables.size(s._1); List<Tuple2<String, Double>> results = new ArrayList<>(); for (String n : s._1) { results.add(new Tuple2<>(n, s._2() / urlCount)); } return results; }); // Re-calculates URL ranks based on neighbor contributions. ranks = contribs.reduceByKey((a, b) -> a + b).mapValues(sum -> 0.15 + sum * 0.85); } // Collects all URL ranks and dump them to console. final List<Tuple2<String, Double>> output = ranks.collect(); for (Tuple2 tuple : output) { System.out.println(tuple._1() + " has rank: " + tuple._2() + "."); } ctx.stop(); } }