org.apache.predictionio.examples.java.recommendations.tutorial1.Algorithm.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.predictionio.examples.java.recommendations.tutorial1.Algorithm.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.predictionio.examples.java.recommendations.tutorial1;

import org.apache.predictionio.controller.java.LJavaAlgorithm;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.OpenMapRealVector;
import scala.Tuple2;
import java.util.Map;
import java.util.HashMap;
import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Queue;
import java.util.PriorityQueue;
import java.util.Comparator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Algorithm extends LJavaAlgorithm<AlgoParams, TrainingData, Model, Query, Float> {

    final static Logger logger = LoggerFactory.getLogger(Algorithm.class);

    AlgoParams params;

    public Algorithm(AlgoParams params) {
        this.params = params;
    }

    @Override
    public Model train(TrainingData data) {
        // pre-process
        Map<Integer, Map<Integer, Float>> itemMap = new HashMap<Integer, Map<Integer, Float>>();
        Map<Integer, Integer> userIndexMap = new HashMap<Integer, Integer>();
        Map<Integer, Integer> itemIndexMap = new HashMap<Integer, Integer>();

        int itemIndex = 0;
        int userIndex = 0;
        for (TrainingData.Rating r : data.ratings) {
            Map<Integer, Float> userRating = itemMap.get(r.iid);
            if (userRating == null) {
                // new item
                userRating = new HashMap<Integer, Float>();
                itemMap.put(r.iid, userRating);
                itemIndexMap.put(r.iid, itemIndex);
                itemIndex += 1; // increment item index for next item
            }
            userRating.put(r.uid, r.rating);

            // update user index
            Integer u = userIndexMap.get(r.uid);
            if (u == null) {
                // new user
                userIndexMap.put(r.uid, userIndex);
                userIndex += 1;
            }
        }

        int numOfItems = itemIndexMap.size();
        int numOfUsers = userIndexMap.size();

        Map<Integer, RealVector> itemVectors = new HashMap<Integer, RealVector>();
        Map<Integer, RealVector> userHistory = new HashMap<Integer, RealVector>();

        for (Map.Entry<Integer, Map<Integer, Float>> entry : itemMap.entrySet()) {
            Integer itemID = entry.getKey();
            Integer iindex = itemIndexMap.get(itemID);
            Map<Integer, Float> userRatingMap = entry.getValue();
            RealVector item = new ArrayRealVector(numOfUsers); // dimension is numOfUsers
            for (Map.Entry<Integer, Float> r : userRatingMap.entrySet()) {
                Integer userID = r.getKey();
                Float rating = r.getValue();
                Integer uindex = userIndexMap.get(userID);
                item.setEntry(uindex, rating);
                // update user History
                RealVector user = userHistory.get(userID);
                if (user == null) {
                    user = new OpenMapRealVector(numOfItems);
                    userHistory.put(userID, user);
                }
                user.setEntry(iindex, rating);
            }
            itemVectors.put(itemID, item);
        }

        // calculate sim

        Map<Integer, RealVector> itemSimilarity = new HashMap<Integer, RealVector>();
        List<Integer> item1List = new ArrayList<Integer>(itemIndexMap.keySet());
        List<Integer> item2List = new ArrayList<Integer>(item1List);

        int numSimilarItems = 100;
        Comparator<IndexAndScore> comparator = new IndexAndScoreComparator();
        Map<Integer, Queue<IndexAndScore>> topItemSimilarity = new HashMap<Integer, Queue<IndexAndScore>>();

        for (Integer itemID1 : item1List) {
            item2List.remove(0);
            Integer index1 = itemIndexMap.get(itemID1);
            for (Integer itemID2 : item2List) {
                RealVector vector1 = itemVectors.get(itemID1);
                RealVector vector2 = itemVectors.get(itemID2);
                double score = vector1.cosine(vector2);
                if (score > params.threshold) {
                    Integer index2 = itemIndexMap.get(itemID2);
                    setTopItemSimilarity(topItemSimilarity, itemID1, index2, score, numSimilarItems, comparator);
                    setTopItemSimilarity(topItemSimilarity, itemID2, index1, score, numSimilarItems, comparator);
                }
            }
        }

        for (Map.Entry<Integer, Queue<IndexAndScore>> entry : topItemSimilarity.entrySet()) {
            Iterator<IndexAndScore> it = entry.getValue().iterator();
            RealVector vector = new OpenMapRealVector(numOfItems);
            while (it.hasNext()) {
                IndexAndScore d = it.next();
                vector.setEntry(d.index, d.score);
            }
            itemSimilarity.put(entry.getKey(), vector);
        }

        return new Model(itemSimilarity, userHistory);
    }

    private class IndexAndScore {
        int index;
        double score;

        public IndexAndScore(int index, double score) {
            this.index = index;
            this.score = score;
        }
    }

    private class IndexAndScoreComparator implements Comparator<IndexAndScore> {
        @Override
        public int compare(IndexAndScore o1, IndexAndScore o2) {
            int r = 0;
            if (o1.score < o2.score)
                r = -1;
            else if (o1.score > o2.score)
                r = 1;
            return r;
        }
    }

    private void setTopItemSimilarity(Map<Integer, Queue<IndexAndScore>> topItemSimilarity, Integer itemID1,
            Integer index2, double score, int capacity, Comparator<IndexAndScore> comparator) {
        Queue<IndexAndScore> queue = topItemSimilarity.get(itemID1);
        if (queue == null) {
            queue = new PriorityQueue<IndexAndScore>(capacity, comparator);
            topItemSimilarity.put(itemID1, queue);
        }
        IndexAndScore entry = new IndexAndScore(index2, score);
        if (queue.size() < capacity)
            queue.add(entry);
        else if (comparator.compare(queue.peek(), entry) < 0) {
            queue.poll();
            queue.add(entry);
        }
    }

    @Override
    public Float predict(Model model, Query query) {
        RealVector itemVector = model.itemSimilarity.get(query.iid);
        RealVector userVector = model.userHistory.get(query.uid);
        if (itemVector == null) {
            // cold start item, can't be handled by this algo, return hard code value.
            return Float.NaN;
        } else if (userVector == null) {
            // new user, can't be handled by this algo, return hard code value.
            return Float.NaN;
        } else {
            //logger.info("(" + query.uid + "," + query.iid + ")");
            //logger.info(itemVector.toString());
            //logger.info(userVector.toString());
            double accum = 0.0;
            double accumSim = 0.0;
            for (int i = 0; i < itemVector.getDimension(); i++) {
                double weight = itemVector.getEntry(i);
                double rating = userVector.getEntry(i);
                if ((weight != 0) && (rating != 0)) {
                    accum += weight * rating;
                    accumSim += Math.abs(weight);
                }
            }

            if (accumSim == 0.0) {
                return Float.NaN;
            } else {
                return (float) (accum / accumSim);
            }
        }
    }

}