Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.mahout.vectorizer.tfidf; import java.io.IOException; import java.net.URI; import java.util.Iterator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapreduce.Reducer; import org.apache.mahout.common.HadoopUtil; import org.apache.mahout.common.Pair; import org.apache.mahout.common.iterator.sequencefile.SequenceFileIterable; import org.apache.mahout.math.NamedVector; import org.apache.mahout.math.RandomAccessSparseVector; import org.apache.mahout.math.SequentialAccessSparseVector; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; import org.apache.mahout.math.map.OpenIntLongHashMap; import org.apache.mahout.vectorizer.TFIDF; import org.apache.mahout.vectorizer.common.PartialVectorMerger; /** * Converts a document into a sparse vector */ public class TFIDFPartialVectorReducer extends Reducer<WritableComparable<?>, VectorWritable, WritableComparable<?>, VectorWritable> { private final OpenIntLongHashMap dictionary = new OpenIntLongHashMap(); private final TFIDF tfidf = new TFIDF(); private int minDf = 1; private long maxDf = -1; private long vectorCount = 1; private long featureCount; private boolean sequentialAccess; private boolean namedVector; @Override protected void reduce(WritableComparable<?> key, Iterable<VectorWritable> values, Context context) throws IOException, InterruptedException { Iterator<VectorWritable> it = values.iterator(); if (!it.hasNext()) { return; } Vector value = it.next().get(); Vector vector = new RandomAccessSparseVector((int) featureCount, value.getNumNondefaultElements()); for (Vector.Element e : value.nonZeroes()) { if (!dictionary.containsKey(e.index())) { continue; } long df = dictionary.get(e.index()); if (maxDf > -1 && (100.0 * df) / vectorCount > maxDf) { continue; } if (df < minDf) { df = minDf; } vector.setQuick(e.index(), tfidf.calculate((int) e.get(), (int) df, (int) featureCount, (int) vectorCount)); } if (sequentialAccess) { vector = new SequentialAccessSparseVector(vector); } if (namedVector) { vector = new NamedVector(vector, key.toString()); } VectorWritable vectorWritable = new VectorWritable(vector); context.write(key, vectorWritable); } @Override protected void setup(Context context) throws IOException, InterruptedException { super.setup(context); Configuration conf = context.getConfiguration(); vectorCount = conf.getLong(TFIDFConverter.VECTOR_COUNT, 1); featureCount = conf.getLong(TFIDFConverter.FEATURE_COUNT, 1); minDf = conf.getInt(TFIDFConverter.MIN_DF, 1); maxDf = conf.getLong(TFIDFConverter.MAX_DF, -1); sequentialAccess = conf.getBoolean(PartialVectorMerger.SEQUENTIAL_ACCESS, false); namedVector = conf.getBoolean(PartialVectorMerger.NAMED_VECTOR, false); URI[] localFiles = DistributedCache.getCacheFiles(conf); Path dictionaryFile = HadoopUtil.findInCacheByPartOfFilename(TFIDFConverter.FREQUENCY_FILE, localFiles); // key is feature, value is the document frequency for (Pair<IntWritable, LongWritable> record : new SequenceFileIterable<IntWritable, LongWritable>( dictionaryFile, true, conf)) { dictionary.put(record.getFirst().get(), record.getSecond().get()); } } }