org.apache.mahout.vectorizer.tfidf.TFIDFConverter.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.mahout.vectorizer.tfidf.TFIDFConverter.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.vectorizer.tfidf;

import com.google.common.base.Preconditions;
import com.google.common.collect.Lists;
import com.google.common.io.Closeables;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.vectorizer.common.PartialVectorMerger;
import org.apache.mahout.vectorizer.term.TermDocumentCountMapper;
import org.apache.mahout.vectorizer.term.TermDocumentCountReducer;

import java.io.IOException;
import java.util.List;

/**
 * This class converts a set of input vectors with term frequencies to TfIdf vectors. The Sequence file input
 * should have a {@link org.apache.hadoop.io.WritableComparable} key containing and a
 * {@link VectorWritable} value containing the
 * term frequency vector. This is conversion class uses multiple map/reduces to convert the vectors to TfIdf
 * format
 * 
 */
public final class TFIDFConverter {

    public static final String VECTOR_COUNT = "vector.count";
    public static final String FEATURE_COUNT = "feature.count";
    public static final String MIN_DF = "min.df";
    public static final String MAX_DF = "max.df";
    //public static final String TFIDF_OUTPUT_FOLDER = "tfidf";

    private static final String DOCUMENT_VECTOR_OUTPUT_FOLDER = "tfidf-vectors";
    public static final String FREQUENCY_FILE = "frequency.file-";
    private static final int MAX_CHUNKSIZE = 10000;
    private static final int MIN_CHUNKSIZE = 100;
    private static final String OUTPUT_FILES_PATTERN = "part-*";
    private static final int SEQUENCEFILE_BYTE_OVERHEAD = 45;
    private static final String VECTOR_OUTPUT_FOLDER = "partial-vectors-";
    public static final String WORDCOUNT_OUTPUT_FOLDER = "df-count";

    /**
     * Cannot be initialized. Use the static functions
     */
    private TFIDFConverter() {
    }

    /**
     * Create Term Frequency-Inverse Document Frequency (Tf-Idf) Vectors from the input set of vectors in
     * {@link SequenceFile} format. This job uses a fixed limit on the maximum memory used by the feature chunk
     * per node thereby splitting the process across multiple map/reduces.
     * Before using this method calculateDF should be called
     * 
     * @param input
     *          input directory of the vectors in {@link SequenceFile} format
     * @param output
     *          output directory where {@link org.apache.mahout.math.RandomAccessSparseVector}'s of the document
     *          are generated
     * @param datasetFeatures
     *          Document frequencies information calculated by calculateDF
     * @param minDf
     *          The minimum document frequency. Default 1
     * @param maxDF
     *          The max percentage of vectors for the DF. Can be used to remove really high frequency features.
     *          Expressed as an integer between 0 and 100. Default 99
     * @param numReducers 
     *          The number of reducers to spawn. This also affects the possible parallelism since each reducer
     *          will typically produce a single output file containing tf-idf vectors for a subset of the
     *          documents in the corpus.
     */
    public static void processTfIdf(Path input, Path output, Configuration baseConf,
            Pair<Long[], List<Path>> datasetFeatures, int minDf, long maxDF, float normPower, boolean logNormalize,
            boolean sequentialAccessOutput, boolean namedVector, int numReducers)
            throws IOException, InterruptedException, ClassNotFoundException {
        Preconditions.checkArgument(normPower == PartialVectorMerger.NO_NORMALIZING || normPower >= 0,
                "If specified normPower must be nonnegative", normPower);
        Preconditions.checkArgument(
                normPower == PartialVectorMerger.NO_NORMALIZING || (normPower > 1 && !Double.isInfinite(normPower))
                        || !logNormalize,
                "normPower must be > 1 and not infinite if log normalization is chosen", normPower);

        int partialVectorIndex = 0;
        List<Path> partialVectorPaths = Lists.newArrayList();
        List<Path> dictionaryChunks = datasetFeatures.getSecond();
        for (Path dictionaryChunk : dictionaryChunks) {
            Path partialVectorOutputPath = new Path(output, VECTOR_OUTPUT_FOLDER + partialVectorIndex++);
            partialVectorPaths.add(partialVectorOutputPath);
            makePartialVectors(input, baseConf, datasetFeatures.getFirst()[0], datasetFeatures.getFirst()[1], minDf,
                    maxDF, dictionaryChunk, partialVectorOutputPath, sequentialAccessOutput, namedVector);
        }

        Configuration conf = new Configuration(baseConf);

        Path outputDir = new Path(output, DOCUMENT_VECTOR_OUTPUT_FOLDER);

        PartialVectorMerger.mergePartialVectors(partialVectorPaths, outputDir, baseConf, normPower, logNormalize,
                datasetFeatures.getFirst()[0].intValue(), sequentialAccessOutput, namedVector, numReducers);
        HadoopUtil.delete(conf, partialVectorPaths);

    }

    /**
     * Calculates the document frequencies of all terms from the input set of vectors in
     * {@link SequenceFile} format. This job uses a fixed limit on the maximum memory used by the feature chunk
     * per node thereby splitting the process across multiple map/reduces.
     * 
     * @param input
     *          input directory of the vectors in {@link SequenceFile} format
     * @param output
     *          output directory where document frequencies will be stored
     * @param chunkSizeInMegabytes
     *          the size in MB of the feature => id chunk to be kept in memory at each node during Map/Reduce
     *          stage. Its recommended you calculated this based on the number of cores and the free memory
     *          available to you per node. Say, you have 2 cores and around 1GB extra memory to spare we
     *          recommend you use a split size of around 400-500MB so that two simultaneous reducers can create
     *          partial vectors without thrashing the system due to increased swapping
     */
    public static Pair<Long[], List<Path>> calculateDF(Path input, Path output, Configuration baseConf,
            int chunkSizeInMegabytes) throws IOException, InterruptedException, ClassNotFoundException {

        if (chunkSizeInMegabytes < MIN_CHUNKSIZE) {
            chunkSizeInMegabytes = MIN_CHUNKSIZE;
        } else if (chunkSizeInMegabytes > MAX_CHUNKSIZE) { // 10GB
            chunkSizeInMegabytes = MAX_CHUNKSIZE;
        }

        Path wordCountPath = new Path(output, WORDCOUNT_OUTPUT_FOLDER);

        startDFCounting(input, wordCountPath, baseConf);

        return createDictionaryChunks(wordCountPath, output, baseConf, chunkSizeInMegabytes);
    }

    /**
     * Read the document frequency List which is built at the end of the DF Count Job. This will use constant
     * memory and will run at the speed of your disk read
     */
    private static Pair<Long[], List<Path>> createDictionaryChunks(Path featureCountPath, Path dictionaryPathBase,
            Configuration baseConf, int chunkSizeInMegabytes) throws IOException {
        List<Path> chunkPaths = Lists.newArrayList();
        Configuration conf = new Configuration(baseConf);

        FileSystem fs = FileSystem.get(featureCountPath.toUri(), conf);

        long chunkSizeLimit = chunkSizeInMegabytes * 1024L * 1024L;
        int chunkIndex = 0;
        Path chunkPath = new Path(dictionaryPathBase, FREQUENCY_FILE + chunkIndex);
        chunkPaths.add(chunkPath);
        SequenceFile.Writer freqWriter = new SequenceFile.Writer(fs, conf, chunkPath, IntWritable.class,
                LongWritable.class);

        try {
            long currentChunkSize = 0;
            long featureCount = 0;
            long vectorCount = Long.MAX_VALUE;
            Path filesPattern = new Path(featureCountPath, OUTPUT_FILES_PATTERN);
            for (Pair<IntWritable, LongWritable> record : new SequenceFileDirIterable<IntWritable, LongWritable>(
                    filesPattern, PathType.GLOB, null, null, true, conf)) {

                if (currentChunkSize > chunkSizeLimit) {
                    Closeables.close(freqWriter, false);
                    chunkIndex++;

                    chunkPath = new Path(dictionaryPathBase, FREQUENCY_FILE + chunkIndex);
                    chunkPaths.add(chunkPath);

                    freqWriter = new SequenceFile.Writer(fs, conf, chunkPath, IntWritable.class,
                            LongWritable.class);
                    currentChunkSize = 0;
                }

                int fieldSize = SEQUENCEFILE_BYTE_OVERHEAD + Integer.SIZE / 8 + Long.SIZE / 8;
                currentChunkSize += fieldSize;
                IntWritable key = record.getFirst();
                LongWritable value = record.getSecond();
                if (key.get() >= 0) {
                    freqWriter.append(key, value);
                } else if (key.get() == -1) {
                    vectorCount = value.get();
                }
                featureCount = Math.max(key.get(), featureCount);

            }
            featureCount++;
            Long[] counts = { featureCount, vectorCount };
            return new Pair<Long[], List<Path>>(counts, chunkPaths);
        } finally {
            Closeables.close(freqWriter, false);
        }
    }

    /**
     * Create a partial tfidf vector using a chunk of features from the input vectors. The input vectors has to
     * be in the {@link SequenceFile} format
     * 
     * @param input
     *          input directory of the vectors in {@link SequenceFile} format
     * @param featureCount
     *          Number of unique features in the dataset
     * @param vectorCount
     *          Number of vectors in the dataset
     * @param minDf
     *          The minimum document frequency. Default 1
     * @param maxDF
     *          The max percentage of vectors for the DF. Can be used to remove really high frequency features.
     *          Expressed as an integer between 0 and 100. Default 99
     * @param dictionaryFilePath
     *          location of the chunk of features and the id's
     * @param output
     *          output directory were the partial vectors have to be created
     * @param sequentialAccess
     *          output vectors should be optimized for sequential access
     * @param namedVector
     *          output vectors should be named, retaining key (doc id) as a label
     */
    private static void makePartialVectors(Path input, Configuration baseConf, Long featureCount, Long vectorCount,
            int minDf, long maxDF, Path dictionaryFilePath, Path output, boolean sequentialAccess,
            boolean namedVector) throws IOException, InterruptedException, ClassNotFoundException {

        Configuration conf = new Configuration(baseConf);
        // this conf parameter needs to be set enable serialisation of conf values
        conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,"
                + "org.apache.hadoop.io.serializer.WritableSerialization");
        conf.setLong(FEATURE_COUNT, featureCount);
        conf.setLong(VECTOR_COUNT, vectorCount);
        conf.setInt(MIN_DF, minDf);
        conf.setLong(MAX_DF, maxDF);
        conf.setBoolean(PartialVectorMerger.SEQUENTIAL_ACCESS, sequentialAccess);
        conf.setBoolean(PartialVectorMerger.NAMED_VECTOR, namedVector);
        DistributedCache.addCacheFile(dictionaryFilePath.toUri(), conf);

        Job job = new Job(conf);
        job.setJobName(": MakePartialVectors: input-folder: " + input + ", dictionary-file: "
                + dictionaryFilePath.toString());
        job.setJarByClass(TFIDFConverter.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(VectorWritable.class);
        FileInputFormat.setInputPaths(job, input);

        FileOutputFormat.setOutputPath(job, output);

        job.setMapperClass(Mapper.class);
        job.setInputFormatClass(SequenceFileInputFormat.class);
        job.setReducerClass(TFIDFPartialVectorReducer.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);

        HadoopUtil.delete(conf, output);

        boolean succeeded = job.waitForCompletion(true);
        if (!succeeded) {
            throw new IllegalStateException("Job failed!");
        }
    }

    /**
     * Count the document frequencies of features in parallel using Map/Reduce. The input documents have to be
     * in {@link SequenceFile} format
     */
    private static void startDFCounting(Path input, Path output, Configuration baseConf)
            throws IOException, InterruptedException, ClassNotFoundException {

        Configuration conf = new Configuration(baseConf);
        // this conf parameter needs to be set enable serialisation of conf values
        conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,"
                + "org.apache.hadoop.io.serializer.WritableSerialization");

        Job job = new Job(conf);
        job.setJobName("VectorTfIdf Document Frequency Count running over input: " + input);
        job.setJarByClass(TFIDFConverter.class);

        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(LongWritable.class);

        FileInputFormat.setInputPaths(job, input);
        FileOutputFormat.setOutputPath(job, output);

        job.setMapperClass(TermDocumentCountMapper.class);

        job.setInputFormatClass(SequenceFileInputFormat.class);
        job.setCombinerClass(TermDocumentCountReducer.class);
        job.setReducerClass(TermDocumentCountReducer.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);

        HadoopUtil.delete(conf, output);

        boolean succeeded = job.waitForCompletion(true);
        if (!succeeded) {
            throw new IllegalStateException("Job failed!");
        }
    }
}