Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.mahout.vectorizer.tfidf; import com.google.common.base.Preconditions; import com.google.common.collect.Lists; import com.google.common.io.Closeables; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.mahout.common.HadoopUtil; import org.apache.mahout.common.Pair; import org.apache.mahout.common.iterator.sequencefile.PathType; import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable; import org.apache.mahout.math.VectorWritable; import org.apache.mahout.vectorizer.common.PartialVectorMerger; import org.apache.mahout.vectorizer.term.TermDocumentCountMapper; import org.apache.mahout.vectorizer.term.TermDocumentCountReducer; import java.io.IOException; import java.util.List; /** * This class converts a set of input vectors with term frequencies to TfIdf vectors. The Sequence file input * should have a {@link org.apache.hadoop.io.WritableComparable} key containing and a * {@link VectorWritable} value containing the * term frequency vector. This is conversion class uses multiple map/reduces to convert the vectors to TfIdf * format * */ public final class TFIDFConverter { public static final String VECTOR_COUNT = "vector.count"; public static final String FEATURE_COUNT = "feature.count"; public static final String MIN_DF = "min.df"; public static final String MAX_DF = "max.df"; //public static final String TFIDF_OUTPUT_FOLDER = "tfidf"; private static final String DOCUMENT_VECTOR_OUTPUT_FOLDER = "tfidf-vectors"; public static final String FREQUENCY_FILE = "frequency.file-"; private static final int MAX_CHUNKSIZE = 10000; private static final int MIN_CHUNKSIZE = 100; private static final String OUTPUT_FILES_PATTERN = "part-*"; private static final int SEQUENCEFILE_BYTE_OVERHEAD = 45; private static final String VECTOR_OUTPUT_FOLDER = "partial-vectors-"; public static final String WORDCOUNT_OUTPUT_FOLDER = "df-count"; /** * Cannot be initialized. Use the static functions */ private TFIDFConverter() { } /** * Create Term Frequency-Inverse Document Frequency (Tf-Idf) Vectors from the input set of vectors in * {@link SequenceFile} format. This job uses a fixed limit on the maximum memory used by the feature chunk * per node thereby splitting the process across multiple map/reduces. * Before using this method calculateDF should be called * * @param input * input directory of the vectors in {@link SequenceFile} format * @param output * output directory where {@link org.apache.mahout.math.RandomAccessSparseVector}'s of the document * are generated * @param datasetFeatures * Document frequencies information calculated by calculateDF * @param minDf * The minimum document frequency. Default 1 * @param maxDF * The max percentage of vectors for the DF. Can be used to remove really high frequency features. * Expressed as an integer between 0 and 100. Default 99 * @param numReducers * The number of reducers to spawn. This also affects the possible parallelism since each reducer * will typically produce a single output file containing tf-idf vectors for a subset of the * documents in the corpus. */ public static void processTfIdf(Path input, Path output, Configuration baseConf, Pair<Long[], List<Path>> datasetFeatures, int minDf, long maxDF, float normPower, boolean logNormalize, boolean sequentialAccessOutput, boolean namedVector, int numReducers) throws IOException, InterruptedException, ClassNotFoundException { Preconditions.checkArgument(normPower == PartialVectorMerger.NO_NORMALIZING || normPower >= 0, "If specified normPower must be nonnegative", normPower); Preconditions.checkArgument( normPower == PartialVectorMerger.NO_NORMALIZING || (normPower > 1 && !Double.isInfinite(normPower)) || !logNormalize, "normPower must be > 1 and not infinite if log normalization is chosen", normPower); int partialVectorIndex = 0; List<Path> partialVectorPaths = Lists.newArrayList(); List<Path> dictionaryChunks = datasetFeatures.getSecond(); for (Path dictionaryChunk : dictionaryChunks) { Path partialVectorOutputPath = new Path(output, VECTOR_OUTPUT_FOLDER + partialVectorIndex++); partialVectorPaths.add(partialVectorOutputPath); makePartialVectors(input, baseConf, datasetFeatures.getFirst()[0], datasetFeatures.getFirst()[1], minDf, maxDF, dictionaryChunk, partialVectorOutputPath, sequentialAccessOutput, namedVector); } Configuration conf = new Configuration(baseConf); Path outputDir = new Path(output, DOCUMENT_VECTOR_OUTPUT_FOLDER); PartialVectorMerger.mergePartialVectors(partialVectorPaths, outputDir, baseConf, normPower, logNormalize, datasetFeatures.getFirst()[0].intValue(), sequentialAccessOutput, namedVector, numReducers); HadoopUtil.delete(conf, partialVectorPaths); } /** * Calculates the document frequencies of all terms from the input set of vectors in * {@link SequenceFile} format. This job uses a fixed limit on the maximum memory used by the feature chunk * per node thereby splitting the process across multiple map/reduces. * * @param input * input directory of the vectors in {@link SequenceFile} format * @param output * output directory where document frequencies will be stored * @param chunkSizeInMegabytes * the size in MB of the feature => id chunk to be kept in memory at each node during Map/Reduce * stage. Its recommended you calculated this based on the number of cores and the free memory * available to you per node. Say, you have 2 cores and around 1GB extra memory to spare we * recommend you use a split size of around 400-500MB so that two simultaneous reducers can create * partial vectors without thrashing the system due to increased swapping */ public static Pair<Long[], List<Path>> calculateDF(Path input, Path output, Configuration baseConf, int chunkSizeInMegabytes) throws IOException, InterruptedException, ClassNotFoundException { if (chunkSizeInMegabytes < MIN_CHUNKSIZE) { chunkSizeInMegabytes = MIN_CHUNKSIZE; } else if (chunkSizeInMegabytes > MAX_CHUNKSIZE) { // 10GB chunkSizeInMegabytes = MAX_CHUNKSIZE; } Path wordCountPath = new Path(output, WORDCOUNT_OUTPUT_FOLDER); startDFCounting(input, wordCountPath, baseConf); return createDictionaryChunks(wordCountPath, output, baseConf, chunkSizeInMegabytes); } /** * Read the document frequency List which is built at the end of the DF Count Job. This will use constant * memory and will run at the speed of your disk read */ private static Pair<Long[], List<Path>> createDictionaryChunks(Path featureCountPath, Path dictionaryPathBase, Configuration baseConf, int chunkSizeInMegabytes) throws IOException { List<Path> chunkPaths = Lists.newArrayList(); Configuration conf = new Configuration(baseConf); FileSystem fs = FileSystem.get(featureCountPath.toUri(), conf); long chunkSizeLimit = chunkSizeInMegabytes * 1024L * 1024L; int chunkIndex = 0; Path chunkPath = new Path(dictionaryPathBase, FREQUENCY_FILE + chunkIndex); chunkPaths.add(chunkPath); SequenceFile.Writer freqWriter = new SequenceFile.Writer(fs, conf, chunkPath, IntWritable.class, LongWritable.class); try { long currentChunkSize = 0; long featureCount = 0; long vectorCount = Long.MAX_VALUE; Path filesPattern = new Path(featureCountPath, OUTPUT_FILES_PATTERN); for (Pair<IntWritable, LongWritable> record : new SequenceFileDirIterable<IntWritable, LongWritable>( filesPattern, PathType.GLOB, null, null, true, conf)) { if (currentChunkSize > chunkSizeLimit) { Closeables.close(freqWriter, false); chunkIndex++; chunkPath = new Path(dictionaryPathBase, FREQUENCY_FILE + chunkIndex); chunkPaths.add(chunkPath); freqWriter = new SequenceFile.Writer(fs, conf, chunkPath, IntWritable.class, LongWritable.class); currentChunkSize = 0; } int fieldSize = SEQUENCEFILE_BYTE_OVERHEAD + Integer.SIZE / 8 + Long.SIZE / 8; currentChunkSize += fieldSize; IntWritable key = record.getFirst(); LongWritable value = record.getSecond(); if (key.get() >= 0) { freqWriter.append(key, value); } else if (key.get() == -1) { vectorCount = value.get(); } featureCount = Math.max(key.get(), featureCount); } featureCount++; Long[] counts = { featureCount, vectorCount }; return new Pair<Long[], List<Path>>(counts, chunkPaths); } finally { Closeables.close(freqWriter, false); } } /** * Create a partial tfidf vector using a chunk of features from the input vectors. The input vectors has to * be in the {@link SequenceFile} format * * @param input * input directory of the vectors in {@link SequenceFile} format * @param featureCount * Number of unique features in the dataset * @param vectorCount * Number of vectors in the dataset * @param minDf * The minimum document frequency. Default 1 * @param maxDF * The max percentage of vectors for the DF. Can be used to remove really high frequency features. * Expressed as an integer between 0 and 100. Default 99 * @param dictionaryFilePath * location of the chunk of features and the id's * @param output * output directory were the partial vectors have to be created * @param sequentialAccess * output vectors should be optimized for sequential access * @param namedVector * output vectors should be named, retaining key (doc id) as a label */ private static void makePartialVectors(Path input, Configuration baseConf, Long featureCount, Long vectorCount, int minDf, long maxDF, Path dictionaryFilePath, Path output, boolean sequentialAccess, boolean namedVector) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = new Configuration(baseConf); // this conf parameter needs to be set enable serialisation of conf values conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization," + "org.apache.hadoop.io.serializer.WritableSerialization"); conf.setLong(FEATURE_COUNT, featureCount); conf.setLong(VECTOR_COUNT, vectorCount); conf.setInt(MIN_DF, minDf); conf.setLong(MAX_DF, maxDF); conf.setBoolean(PartialVectorMerger.SEQUENTIAL_ACCESS, sequentialAccess); conf.setBoolean(PartialVectorMerger.NAMED_VECTOR, namedVector); DistributedCache.addCacheFile(dictionaryFilePath.toUri(), conf); Job job = new Job(conf); job.setJobName(": MakePartialVectors: input-folder: " + input + ", dictionary-file: " + dictionaryFilePath.toString()); job.setJarByClass(TFIDFConverter.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(VectorWritable.class); FileInputFormat.setInputPaths(job, input); FileOutputFormat.setOutputPath(job, output); job.setMapperClass(Mapper.class); job.setInputFormatClass(SequenceFileInputFormat.class); job.setReducerClass(TFIDFPartialVectorReducer.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); HadoopUtil.delete(conf, output); boolean succeeded = job.waitForCompletion(true); if (!succeeded) { throw new IllegalStateException("Job failed!"); } } /** * Count the document frequencies of features in parallel using Map/Reduce. The input documents have to be * in {@link SequenceFile} format */ private static void startDFCounting(Path input, Path output, Configuration baseConf) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = new Configuration(baseConf); // this conf parameter needs to be set enable serialisation of conf values conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization," + "org.apache.hadoop.io.serializer.WritableSerialization"); Job job = new Job(conf); job.setJobName("VectorTfIdf Document Frequency Count running over input: " + input); job.setJarByClass(TFIDFConverter.class); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(LongWritable.class); FileInputFormat.setInputPaths(job, input); FileOutputFormat.setOutputPath(job, output); job.setMapperClass(TermDocumentCountMapper.class); job.setInputFormatClass(SequenceFileInputFormat.class); job.setCombinerClass(TermDocumentCountReducer.class); job.setReducerClass(TermDocumentCountReducer.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); HadoopUtil.delete(conf, output); boolean succeeded = job.waitForCompletion(true); if (!succeeded) { throw new IllegalStateException("Job failed!"); } } }