Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.mahout.clustering; import org.apache.commons.math3.distribution.NormalDistribution; import org.apache.commons.math3.distribution.RealDistribution; import org.apache.mahout.common.RandomUtils; import org.apache.mahout.common.RandomWrapper; public final class UncommonDistributions { private static final RandomWrapper RANDOM = RandomUtils.getRandom(); private UncommonDistributions() { } // =============== start of BSD licensed code. See LICENSE.txt /** * Returns a double sampled according to this distribution. Uniformly fast for all k > 0. (Reference: * Non-Uniform Random Variate Generation, Devroye http://cgm.cs.mcgill.ca/~luc/rnbookindex.html) Uses * Cheng's rejection algorithm (GB) for k>=1, rejection from Weibull distribution for 0 < k < 1. */ public static double rGamma(double k, double lambda) { boolean accept = false; if (k >= 1.0) { // Cheng's algorithm double b = k - Math.log(4.0); double c = k + Math.sqrt(2.0 * k - 1.0); double lam = Math.sqrt(2.0 * k - 1.0); double cheng = 1.0 + Math.log(4.5); double x; do { double u = RANDOM.nextDouble(); double v = RANDOM.nextDouble(); double y = 1.0 / lam * Math.log(v / (1.0 - v)); x = k * Math.exp(y); double z = u * v * v; double r = b + c * y - x; if (r >= 4.5 * z - cheng || r >= Math.log(z)) { accept = true; } } while (!accept); return x / lambda; } else { // Weibull algorithm double c = 1.0 / k; double d = (1.0 - k) * Math.pow(k, k / (1.0 - k)); double x; do { double u = RANDOM.nextDouble(); double v = RANDOM.nextDouble(); double z = -Math.log(u); double e = -Math.log(v); x = Math.pow(z, c); if (z + e >= d + x) { accept = true; } } while (!accept); return x / lambda; } } // ============= end of BSD licensed code /** * Returns a random sample from a beta distribution with the given shapes * * @param shape1 * a double representing shape1 * @param shape2 * a double representing shape2 * @return a Vector of samples */ public static double rBeta(double shape1, double shape2) { double gam1 = rGamma(shape1, 1.0); double gam2 = rGamma(shape2, 1.0); return gam1 / (gam1 + gam2); } /** * Return a random value from a normal distribution with the given mean and standard deviation * * @param mean * a double mean value * @param sd * a double standard deviation * @return a double sample */ public static double rNorm(double mean, double sd) { RealDistribution dist = new NormalDistribution(RANDOM.getRandomGenerator(), mean, sd, NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); return dist.sample(); } /** * Returns an integer sampled according to this distribution. Takes time proportional to np + 1. (Reference: * Non-Uniform Random Variate Generation, Devroye http://cgm.cs.mcgill.ca/~luc/rnbookindex.html) Second * time-waiting algorithm. */ public static int rBinomial(int n, double p) { if (p >= 1.0) { return n; // needed to avoid infinite loops and negative results } double q = -Math.log1p(-p); double sum = 0.0; int x = 0; while (sum <= q) { double u = RANDOM.nextDouble(); double e = -Math.log(u); sum += e / (n - x); x++; } if (x == 0) { return 0; } return x - 1; } }