Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.mahout.clustering.streaming.mapreduce; import java.io.IOException; import java.util.List; import com.google.common.base.Function; import com.google.common.base.Preconditions; import com.google.common.collect.Iterables; import com.google.common.collect.Lists; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.mapreduce.Reducer; import org.apache.mahout.clustering.streaming.cluster.BallKMeans; import org.apache.mahout.common.commandline.DefaultOptionCreator; import org.apache.mahout.math.Centroid; import org.apache.mahout.math.Vector; import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class StreamingKMeansReducer extends Reducer<IntWritable, CentroidWritable, IntWritable, CentroidWritable> { private static final Logger log = LoggerFactory.getLogger(StreamingKMeansReducer.class); /** * Configuration for the MapReduce job. */ private Configuration conf; @Override public void setup(Context context) { // At this point the configuration received from the Driver is assumed to be valid. // No other checks are made. conf = context.getConfiguration(); } @Override public void reduce(IntWritable key, Iterable<CentroidWritable> centroids, Context context) throws IOException, InterruptedException { List<Centroid> intermediateCentroids; // There might be too many intermediate centroids to fit into memory, in which case, we run another pass // of StreamingKMeans to collapse the clusters further. if (conf.getBoolean(StreamingKMeansDriver.REDUCE_STREAMING_KMEANS, false)) { intermediateCentroids = Lists.newArrayList(new StreamingKMeansThread( Iterables.transform(centroids, new Function<CentroidWritable, Centroid>() { @Override public Centroid apply(CentroidWritable input) { Preconditions.checkNotNull(input); return input.getCentroid().clone(); } }), conf).call()); } else { intermediateCentroids = centroidWritablesToList(centroids); } int index = 0; for (Vector centroid : getBestCentroids(intermediateCentroids, conf)) { context.write(new IntWritable(index), new CentroidWritable((Centroid) centroid)); ++index; } } public static List<Centroid> centroidWritablesToList(Iterable<CentroidWritable> centroids) { // A new list must be created because Hadoop iterators mutate the contents of the Writable in // place, without allocating new references when iterating through the centroids Iterable. return Lists.newArrayList(Iterables.transform(centroids, new Function<CentroidWritable, Centroid>() { @Override public Centroid apply(CentroidWritable input) { Preconditions.checkNotNull(input); return input.getCentroid().clone(); } })); } public static Iterable<Vector> getBestCentroids(List<Centroid> centroids, Configuration conf) { if (log.isInfoEnabled()) { log.info("Number of Centroids: {}", centroids.size()); } int numClusters = conf.getInt(DefaultOptionCreator.NUM_CLUSTERS_OPTION, 1); int maxNumIterations = conf.getInt(StreamingKMeansDriver.MAX_NUM_ITERATIONS, 10); float trimFraction = conf.getFloat(StreamingKMeansDriver.TRIM_FRACTION, 0.9f); boolean kMeansPlusPlusInit = !conf.getBoolean(StreamingKMeansDriver.RANDOM_INIT, false); boolean correctWeights = !conf.getBoolean(StreamingKMeansDriver.IGNORE_WEIGHTS, false); float testProbability = conf.getFloat(StreamingKMeansDriver.TEST_PROBABILITY, 0.1f); int numRuns = conf.getInt(StreamingKMeansDriver.NUM_BALLKMEANS_RUNS, 3); BallKMeans ballKMeansCluster = new BallKMeans(StreamingKMeansUtilsMR.searcherFromConfiguration(conf), numClusters, maxNumIterations, trimFraction, kMeansPlusPlusInit, correctWeights, testProbability, numRuns); return ballKMeansCluster.cluster(centroids); } }