Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.mahout.clustering.streaming.mapreduce; import java.io.IOException; import java.util.List; import com.google.common.collect.Lists; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.Mapper; import org.apache.mahout.clustering.ClusteringUtils; import org.apache.mahout.clustering.streaming.cluster.StreamingKMeans; import org.apache.mahout.math.Centroid; import org.apache.mahout.math.VectorWritable; import org.apache.mahout.math.neighborhood.UpdatableSearcher; public class StreamingKMeansMapper extends Mapper<Writable, VectorWritable, IntWritable, CentroidWritable> { private static final int NUM_ESTIMATE_POINTS = 1000; /** * The clusterer object used to cluster the points received by this mapper online. */ private StreamingKMeans clusterer; /** * Number of points clustered so far. */ private int numPoints = 0; private boolean estimateDistanceCutoff = false; private List<Centroid> estimatePoints; @Override public void setup(Context context) { // At this point the configuration received from the Driver is assumed to be valid. // No other checks are made. Configuration conf = context.getConfiguration(); UpdatableSearcher searcher = StreamingKMeansUtilsMR.searcherFromConfiguration(conf); int numClusters = conf.getInt(StreamingKMeansDriver.ESTIMATED_NUM_MAP_CLUSTERS, 1); double estimatedDistanceCutoff = conf.getFloat(StreamingKMeansDriver.ESTIMATED_DISTANCE_CUTOFF, StreamingKMeansDriver.INVALID_DISTANCE_CUTOFF); if (estimatedDistanceCutoff == StreamingKMeansDriver.INVALID_DISTANCE_CUTOFF) { estimateDistanceCutoff = true; estimatePoints = Lists.newArrayList(); } // There is no way of estimating the distance cutoff unless we have some data. clusterer = new StreamingKMeans(searcher, numClusters, estimatedDistanceCutoff); } private void clusterEstimatePoints() { clusterer.setDistanceCutoff( ClusteringUtils.estimateDistanceCutoff(estimatePoints, clusterer.getDistanceMeasure())); clusterer.cluster(estimatePoints); estimateDistanceCutoff = false; } @Override public void map(Writable key, VectorWritable point, Context context) { Centroid centroid = new Centroid(numPoints++, point.get(), 1); if (estimateDistanceCutoff) { if (numPoints < NUM_ESTIMATE_POINTS) { estimatePoints.add(centroid); } else if (numPoints == NUM_ESTIMATE_POINTS) { clusterEstimatePoints(); } } else { clusterer.cluster(centroid); } } @Override public void cleanup(Context context) throws IOException, InterruptedException { // We should cluster the points at the end if they haven't yet been clustered. if (estimateDistanceCutoff) { clusterEstimatePoints(); } // Reindex the centroids before passing them to the reducer. clusterer.reindexCentroids(); // All outputs have the same key to go to the same final reducer. for (Centroid centroid : clusterer) { context.write(new IntWritable(0), new CentroidWritable(centroid)); } } }