Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.mahout.clustering.minhash; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.Mapper; import org.apache.mahout.clustering.minhash.HashFactory.HashType; import org.apache.mahout.common.commandline.MinhashOptionCreator; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.IOException; public class MinHashMapper extends Mapper<Text, VectorWritable, Text, Writable> { private static final Logger log = LoggerFactory.getLogger(MinHashMapper.class); private HashFunction[] hashFunction; private int numHashFunctions; private int keyGroups; private int minVectorSize; private boolean debugOutput; private int[] minHashValues; private byte[] bytesToHash; @Override protected void setup(Context context) throws IOException, InterruptedException { super.setup(context); Configuration conf = context.getConfiguration(); this.numHashFunctions = conf.getInt(MinhashOptionCreator.NUM_HASH_FUNCTIONS, 10); this.minHashValues = new int[numHashFunctions]; this.bytesToHash = new byte[4]; this.keyGroups = conf.getInt(MinhashOptionCreator.KEY_GROUPS, 1); this.minVectorSize = conf.getInt(MinhashOptionCreator.MIN_VECTOR_SIZE, 5); String htype = conf.get(MinhashOptionCreator.HASH_TYPE, "linear"); this.debugOutput = conf.getBoolean(MinhashOptionCreator.DEBUG_OUTPUT, false); HashType hashType; try { hashType = HashType.valueOf(htype); } catch (IllegalArgumentException iae) { log.warn("No valid hash type found in configuration for {}, assuming type: {}", htype, HashType.LINEAR); hashType = HashType.LINEAR; } hashFunction = HashFactory.createHashFunctions(hashType, numHashFunctions); } /** * Hash all items with each function and retain min. value for each iteration. We up with X number of * minhash signatures. * <p/> * Now depending upon the number of key-groups (1 - 4) concatenate that many minhash values to form * cluster-id as 'key' and item-id as 'value' */ @Override public void map(Text item, VectorWritable features, Context context) throws IOException, InterruptedException { Vector featureVector = features.get(); if (featureVector.size() < minVectorSize) { return; } // Initialize the minhash values to highest for (int i = 0; i < numHashFunctions; i++) { minHashValues[i] = Integer.MAX_VALUE; } for (int i = 0; i < numHashFunctions; i++) { for (Vector.Element ele : featureVector) { int value = (int) ele.get(); bytesToHash[0] = (byte) (value >> 24); bytesToHash[1] = (byte) (value >> 16); bytesToHash[2] = (byte) (value >> 8); bytesToHash[3] = (byte) value; int hashIndex = hashFunction[i].hash(bytesToHash); //if our new hash value is less than the old one, replace the old one if (minHashValues[i] > hashIndex) { minHashValues[i] = hashIndex; } } } // output the cluster information for (int i = 0; i < numHashFunctions; i++) { StringBuilder clusterIdBuilder = new StringBuilder(); for (int j = 0; j < keyGroups; j++) { clusterIdBuilder.append(minHashValues[(i + j) % numHashFunctions]).append('-'); } //remove the last dash clusterIdBuilder.deleteCharAt(clusterIdBuilder.length() - 1); Text cluster = new Text(clusterIdBuilder.toString()); Writable point; if (debugOutput) { point = new VectorWritable(featureVector.clone()); } else { point = new Text(item.toString()); } context.write(cluster, point); } } }