org.apache.mahout.clustering.kmeans.GenKMeansDataset.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.mahout.clustering.kmeans.GenKMeansDataset.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.clustering.kmeans;

import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.*;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import org.uncommons.maths.random.GaussianGenerator;
import org.uncommons.maths.random.MersenneTwisterRNG;
import org.uncommons.maths.random.ContinuousUniformGenerator;
import org.uncommons.maths.random.DiscreteUniformGenerator;

import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
//import org.apache.mahout.common.AbstractJob;

public class GenKMeansDataset extends Configured implements Tool {
    //public class GenKMeansDataset extends AbstractJob {

    private static final Log LOG = LogFactory.getLog(GenKMeansDataset.class);

    private static long SAMPLES_PER_FILE = 20000000;

    private static final String TEST_BASE_PATH = "/KMeans";
    private static final String TEST_INPUT_PATH = TEST_BASE_PATH + "/input";
    private static final String TEST_INPUT_PATH_SAMPLES = TEST_INPUT_PATH + "/points";
    private static final String TEST_INPUT_PATH_INITCLUSTERS = TEST_INPUT_PATH + "/clusters";

    public static final double[][] simple = { { 1, 1 }, { 2, 1 }, { 1, 2 }, { 2, 2 }, { 3, 3 }, { 4, 4 }, { 5, 4 },
            { 4, 5 }, { 5, 5 } };

    public static List<Vector> samples;

    public static List<Vector> initialCentroids;

    public static List<Vector> getPoints(double[][] raw) {
        List<Vector> points = new ArrayList<Vector>();
        for (int i = 0; i < raw.length; i++) {
            double[] fr = raw[i];
            Vector vec = new RandomAccessSparseVector(fr.length);
            vec.assign(fr);
            points.add(vec);
        }
        return points;
    }

    /**
     * Sample Producer.
     * The samples may be generated randomly using certain distribution,
     * or obtained from public data set.
     */
    public abstract static class SampleProducer {
        protected FileSystem fs;
        protected JobConf conf;
        protected DistanceMeasure dm = new EuclideanDistanceMeasure();

        /**
         * Produce vector samples and add into vector.
         *
         * @param target the target list the produced samples are added into
         * @return the number of samples produced
         */

        public long produceSamples(List<Vector> target) throws Exception {
            return 0;
        }

        /**
         * Produce vector samples and write them directory to file system.
         * This inteface is called when the samples number is too large to be contained in
         * a List. So write to file directly.
         *
         * @param samplePath The path on filesystem the samples file to be written to
         * @param textOutput Generate data by text output format or sequence output format.
         * @return the number of samples produced
         */
        public abstract long produceSamples(Path samplePath, boolean textOutput) throws Exception;

        /**
         * Produce initial cluster centroids and add into provided list.
         * This interface is called after produceSamples is called.
         *
         * @param numClusters  The number centroids to be generated
         * @param centroidList the centroids container
         * @return the actual number of centroids produced
         */
        public abstract int produceInitialCentroids(int numClusters, List<Vector> centroidList) throws Exception;

        /**
         * Produce initial cluster centroids and write the centroids directly to file system.
         * This interface is called after produceSamples is called.
         *
         * @param numClusters   The number centroids to be generated
         * @param centroidsPath the path on FileSystem where centroids are to be written to
         * @return the actual number of centroids produced
         */
        public int produceInitialCentroids(int numClusters, Path centroidsPath) throws Exception {
            List<Vector> iCentroids = new ArrayList<Vector>(numClusters);
            produceInitialCentroids(numClusters, iCentroids);
            SequenceFile.Writer writer = new SequenceFile.Writer(getFileSystem(), getJobConf(), centroidsPath,
                    Text.class, Kluster.class);
            for (int i = 0; i < iCentroids.size(); i++) {
                Vector vec = iCentroids.get(i);
                Kluster cluster = new Kluster(vec, i, dm);
                // add the center so the centroid will be correct upon output
                cluster.observe(cluster.getCenter(), 1);
                writer.append(new Text(cluster.getIdentifier()), cluster);
            }
            writer.close();
            return iCentroids.size();
        }

        public void setFileSystem(FileSystem fs, JobConf conf) {
            this.fs = fs;
            this.conf = conf;
        }

        public FileSystem getFileSystem() {
            return this.fs;
        }

        public JobConf getJobConf() {
            return this.conf;
        }

        protected SequenceFile.Writer createNewFile(Path filepath) throws IOException {
            return createNewFile(filepath, LongWritable.class, VectorWritable.class);
        }

        protected SequenceFile.Writer createNewFile(Path filepath, Class<? extends WritableComparable> keyClass,
                Class<? extends Writable> valueClass) throws IOException {
            SequenceFile.Writer writer = new SequenceFile.Writer(getFileSystem(), getJobConf(), filepath, keyClass,
                    valueClass);
            LOG.info("creating file " + filepath.toString());
            return writer;
        }

    }

    /**
     * Simple Demo Sample Producer for original samples.
     * The samples may be generated randomly using certain distribution,
     * or obtained from public data set.
     */
    public static class DemoSampleProducer extends SampleProducer {
        public DemoSampleProducer() {
        }

        public long produceSamples(Path samplePath, boolean textOutput) throws Exception {
            return 0;
        }

        public int produceInitialCentroids(int numClusters, List<Vector> centroidList) throws Exception {
            return 0;
        }
    }

    /**
     * Generate random sample points using Normal (Gaussian) Distribution.
     */
    public static class GaussianSampleGenerator extends SampleProducer {
        private MersenneTwisterRNG rng;
        private long numSamples = 10;
        private int dimension = 2;
        private double[][][] genParams = { { { 0, 1 }, { 0, 1 } } };
        private double cMin = 0.0;
        private double cMax = 1.0;

        public static class MapClass extends MapReduceBase
                implements Mapper<IntWritable, Text, LongWritable, VectorWritable> {
            private int dimension = 2;

            public void configure(JobConf jobConf) {
                this.dimension = Integer.parseInt(jobConf.get("genkmeansdataset.dimensions"));

            }

            public void map(IntWritable key, Text value, OutputCollector<LongWritable, VectorWritable> output,
                    Reporter reporter) throws IOException {

                try {
                    MersenneTwisterRNG rng = new MersenneTwisterRNG();
                    //create gussian generators based on seeds
                    GaussianGenerator[] gg = new GaussianGenerator[dimension];
                    String[] numbers = value.toString().split("\t");
                    int i = 0;
                    long numSamples = Long.parseLong(numbers[i++]);
                    for (int d = 0; d < dimension; d++) {
                        double mean = Double.parseDouble(numbers[i++]);
                        double std = Double.parseDouble(numbers[i++]);
                        LOG.info("dimension=" + d + ": mean=" + mean + ", std=" + std);
                        gg[d] = new GaussianGenerator(mean, std, rng);
                    }

                    //generate samples
                    double[] vec = new double[dimension];
                    for (long count = 0; count < numSamples; count++) {
                        for (int d = 0; d < dimension; d++)
                            vec[d] = gg[d].nextValue();
                        Vector p = new RandomAccessSparseVector(dimension);
                        p.assign(vec);
                        output.collect(new LongWritable(count), new VectorWritable(p));
                        reporter.setStatus(Long.toString(count + 1) + " samples generated");
                        reporter.incrCounter(HiBench.Counters.BYTES_DATA_GENERATED,
                                8 + p.getNumNondefaultElements() * 8);
                    }
                } catch (Exception e) {
                    LOG.warn("Exception in GussianSampleGenerator.MapClass");
                    e.printStackTrace();
                }
            }
        }

        public GaussianSampleGenerator() {
            rng = new MersenneTwisterRNG();
        }

        public GaussianSampleGenerator(byte[] seed) {
            rng = new MersenneTwisterRNG(seed);
        }

        public void setGenParams(long num, int dimen, double[][][] params, double cMin, double cMax) {
            this.dimension = dimen;
            this.genParams = params;
            this.numSamples = num;
            this.cMin = cMin;
            this.cMax = cMax;
        }

        public long produceSamples(List<Vector> target) throws Exception {
            long numTotal = this.numSamples;
            int centriodNum = genParams.length;
            int numPerCluster = (int) Math.ceil((double) numTotal / (double) centriodNum);
            LOG.info("Cluster number=" + centriodNum + " numbers per cluster=" + numPerCluster);
            GaussianGenerator[] gg = new GaussianGenerator[dimension];
            for (int k = 0; k < genParams.length; k++) {
                if (genParams[k].length != dimension)
                    throw new Exception(
                            "The dimension of mean vector or std vector does not match desired dimension!");
                for (int d = 0; d < dimension; d++) {
                    if (genParams[k][d].length != 2)
                        throw new Exception(
                                "The dimension of mean vector or std vector does not match desired dimension");
                    gg[d] = new GaussianGenerator(genParams[k][d][0], genParams[k][d][1], rng);
                }
                double[] vec = new double[dimension];
                for (int i = 0; i < numPerCluster; i++) {
                    for (int d = 0; d < dimension; d++)
                        vec[d] = gg[d].nextValue();
                    Vector p = new RandomAccessSparseVector(dimension);
                    p.assign(vec);
                    target.add(p);
                }
            }
            return numPerCluster * centriodNum;

        }

        public long writeSeeds(Path sampleSeedPath) throws Exception {

            int fileNo = 0;
            long numTotal = this.numSamples; //total number of samples
            int centriodNum = genParams.length; // number of initial centroids
            long numPerCluster = (long) Math.ceil(numTotal / (double) centriodNum);
            long numFiles = (long) Math.ceil(numPerCluster / (double) SAMPLES_PER_FILE); //num of files per cluster
            for (int k = 0; k < genParams.length; k++) {
                if (genParams[k].length != dimension)
                    throw new Exception(
                            "The dimension of mean vector or std vector does not match desired dimension!");

                StringBuilder sb = new StringBuilder();
                for (int d = 0; d < dimension; d++) {
                    if (genParams[k][d].length != 2)
                        throw new Exception(
                                "The dimension of mean vector or std vector does not match desired dimension");
                    sb.append("\t" + Double.toString(genParams[k][d][0]) + "\t"
                            + Double.toString(genParams[k][d][1]));
                }
                for (long i = 0; i < numFiles; i++) {
                    SequenceFile.Writer out = createNewFile(new Path(sampleSeedPath, "seed" + (fileNo++)),
                            IntWritable.class, Text.class);
                    out.append(new IntWritable(k), new Text(Long.toString(SAMPLES_PER_FILE) + sb.toString()));
                    out.close();
                }
                if (numFiles * SAMPLES_PER_FILE < numPerCluster) {
                    long left = numPerCluster - numFiles * SAMPLES_PER_FILE;
                    SequenceFile.Writer out = createNewFile(new Path(sampleSeedPath, "seed" + (fileNo++)),
                            IntWritable.class, Text.class);
                    out.append(new IntWritable(k), new Text(Long.toString(left) + sb.toString()));
                    out.close();
                }
            }
            return numPerCluster * centriodNum;
        }

        public long produceSamples(Path samplePath, boolean textOutput) throws Exception {
            Path input = new Path(samplePath.toString() + "-seeds");
            this.numSamples = writeSeeds(input);
            LOG.info("Generating " + this.numSamples + " of samples");

            JobConf jobConf = getJobConf();
            jobConf.set("genkmeansdataset.dimensions", Integer.toString(dimension));

            FileInputFormat.setInputPaths(jobConf, input);
            FileOutputFormat.setOutputPath(jobConf, samplePath);

            jobConf.setMapperClass(MapClass.class);

            if (textOutput) {
                jobConf.setInputFormat(SequenceFileInputFormat.class);
                jobConf.setOutputFormat(TextOutputFormat.class);
                jobConf.setOutputKeyClass(LongWritable.class);
                jobConf.setOutputValueClass(VectorWritable.class);
            } else {
                jobConf.setInputFormat(SequenceFileInputFormat.class);
                jobConf.setOutputFormat(SequenceFileOutputFormat.class);
                jobConf.setOutputKeyClass(LongWritable.class);
                jobConf.setOutputValueClass(VectorWritable.class);
            }
            jobConf.setNumReduceTasks(0);
            JobClient.runJob(jobConf);

            return this.numSamples;
        }

        public int produceInitialCentroids(int numClusters, List<Vector> iCentroids) throws Exception {
            //create iniital centroids
            ContinuousUniformGenerator ug = new ContinuousUniformGenerator(this.cMin, this.cMax, rng);
            double[] vec = new double[dimension];
            for (int k = 0; k < numClusters; k++) {
                for (int d = 0; d < dimension; d++) {
                    vec[d] = ug.nextValue();
                }
                Vector p = new RandomAccessSparseVector(dimension);
                p.assign(vec);
                iCentroids.add(p);
            }
            return numClusters;
        }

    }

    /**
     * Read sample data from dataset file
     */
    public static class DatasetSampleReader extends SampleProducer {
        private String dataFile = "";
        private int dimension = 2;
        private long numSamples;

        public DatasetSampleReader(String datafile) {
            this.dataFile = datafile;
        }

        public long produceSamples(Path samplePath, boolean textOutput) throws Exception {
            //open the data set file, must conform to 1990 Concensus Data format
            assert textOutput == false; // not supported yet

            if (dataFile.equals("")) {
                throw new IOException("input data set does not exist!");
            }

            BufferedReader in = new BufferedReader(new FileReader(dataFile));
            String header = in.readLine();
            LOG.info("dataset file features :" + header);
            String[] h = header.split(",");
            //filter out the caseid
            LOG.info("dataset dimension = " + String.valueOf(h.length - 1));
            this.dimension = h.length - 1;

            long sampleNum = 0;
            long samplesInCurrFile = 0;
            String s;
            SequenceFile.Writer out;
            int fileNo = 0;
            out = createNewFile(new Path(samplePath, "file" + (fileNo++)));
            double[] vec = new double[this.dimension];
            while ((s = in.readLine()) != null) {
                //parse input line
                String[] elements = s.split(",");
                if (elements.length != (dimension + 1))
                    throw new Exception("One of input sample does not have correct dimension" + s);
                for (int i = 0; i < dimension; i++) {
                    vec[i] = Double.parseDouble(elements[i + 1]);
                }
                //write to output
                Vector p = new RandomAccessSparseVector(dimension);
                p.assign(vec);
                if (samplesInCurrFile >= SAMPLES_PER_FILE) {
                    out.close();
                    out = createNewFile(new Path(samplePath, "file" + (fileNo++)));
                    samplesInCurrFile = 0;
                }
                out.append(new LongWritable(samplesInCurrFile++), new VectorWritable(p));
                sampleNum++;
                //LOG.info("writing sample "+samplesInCurrFile);
            }
            out.close();
            in.close();
            LOG.info("Parsed " + String.valueOf(sampleNum) + " samples totally.");
            this.numSamples = sampleNum;
            return this.numSamples;
        }

        public int produceInitialCentroids(int numClusters, List<Vector> iCentroids) throws Exception {
            MersenneTwisterRNG rng = new MersenneTwisterRNG();
            int numMax = (numSamples >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : ((int) numSamples);
            DiscreteUniformGenerator dug = new DiscreteUniformGenerator(1, numMax, rng);

            ArrayList<Integer> indexes = new ArrayList<Integer>(numClusters);
            for (int i = 0; i < numClusters; i++) {
                //check duplications
                while (true) {
                    Integer v = dug.nextValue();
                    int j;
                    for (j = 0; j < indexes.size(); j++)
                        if (indexes.get(j) == v)
                            break;
                    if (j == indexes.size())
                        break;
                }
                indexes.add(dug.nextValue());
            }

            BufferedReader in = new BufferedReader(new FileReader(dataFile));
            int line = 0;
            double[] vec = new double[dimension];
            String s;
            while ((s = in.readLine()) != null) {
                line++;
                if (indexes.size() == 0)
                    break;
                for (int i = 0; i < indexes.size(); i++) {
                    if (line == indexes.get(i)) {
                        LOG.info("found line " + String.valueOf(line));
                        String[] elements = s.split(",");
                        for (int d = 0; d < dimension; d++) {
                            vec[d] = Double.parseDouble(elements[d + 1]);
                        }
                        Vector p = new RandomAccessSparseVector(dimension);
                        p.assign(vec);
                        iCentroids.add(p);
                        indexes.remove(i);
                        break;
                    }
                }
            }
            in.close();
            //dump centroids
            LOG.info("Dumping " + iCentroids.size() + " centroids..");
            for (int i = 0; i < iCentroids.size(); i++) {
                LOG.info("Centroid :" + (iCentroids.get(i).asFormatString()));
            }
            return iCentroids.size();
        }
    }

    public int run(String[] args) throws Exception {
        long numSamples = 20;
        int numClusters = 2;
        int dimension = 2;
        double meanMin = 0;
        double meanMax = 1000;
        double stdMin = -100;
        double stdMax = 100;
        String datasetFile = "";
        String sampleDir = TEST_INPUT_PATH_SAMPLES;
        String clusterDir = TEST_INPUT_PATH_INITCLUSTERS;
        String compressCodec = "org.apache.hadoop.io.compress.DefaultCodec";
        String compress = "false";
        String compressType = "BLOCK";
        boolean textOutput = false;

        String welcomeMsg = "Generating Mahout KMeans Input Dataset";
        String usage = "Usage: org.apache.mahout.clustering.kmeans.GenKMeansDataset -sampleDir sampleDirectory -clusterDir centroidDirectory -numClusters numberofClusters -numSamples numberOfSamples -samplesPerFile numberOfSamplesPerFile -sampleDimension dimensionOfEachSample [ -centroidMin minValueOfEachDimensionForCenters -centroidMax maxValueOfEachDimensionForCenters -stdMin minStandardDeviationOfClusters -stdMax maxStandardDeviationOfClusters -maxIteration maxIter (The samples are generated using Gaussian Distribution around a set of centers which are also generated using UniformDistribution) -textOutput (Output text result instead of mahout vector)";
        System.out.println(welcomeMsg);
        if (args.length == 0) {
            System.err.println(usage);
            System.exit(-1);
        }
        for (int i = 0; i < args.length; i++) {
            if (args[i].startsWith("-numSamples")) {
                numSamples = Long.parseLong(args[++i]);
            } else if (args[i].startsWith("-sampleDir")) {
                sampleDir = args[++i];
            } else if (args[i].startsWith("-clusterDir")) {
                clusterDir = args[++i];
            } else if (args[i].startsWith("-numClusters")) {
                numClusters = Integer.parseInt(args[++i]);
            } else if (args[i].startsWith("-samplesPerFile")) {
                SAMPLES_PER_FILE = Long.parseLong(args[++i]);
            } else if (args[i].startsWith("-sampleDimension")) {
                dimension = Integer.parseInt(args[++i]);
            } else if (args[i].startsWith("-centroidMin")) {
                meanMin = Double.parseDouble(args[++i]);
            } else if (args[i].startsWith("-centroidMax")) {
                meanMax = Double.parseDouble(args[++i]);
            } else if (args[i].startsWith("-stdMin")) {
                stdMin = Double.parseDouble(args[++i]);
            } else if (args[i].startsWith("-stdMax")) {
                stdMax = Double.parseDouble(args[++i]);
            } else if (args[i].startsWith("-datasetFile")) {
                datasetFile = args[++i];
            } else if (args[i].startsWith("-maxIteration")) {
            } else if (args[i].startsWith("-compressCodec")) {
                compressCodec = args[++i];
            } else if (args[i].startsWith("-compressType")) {
                compressType = args[++i];
            } else if (args[i].startsWith("-compress")) {
                compress = args[++i];
            } else if (args[i].startsWith("-textOutput")) {
                textOutput = true;
            } else {
                LOG.warn("Illegal format for parameter : " + args[i]);
            }
        }

        SampleProducer sp = new DemoSampleProducer();

        //if no dataset input, use random generator
        if (datasetFile.equals("")) {
            LOG.info("KMeans Clustering Input Dataset : Synthetic");
            GaussianSampleGenerator gsg = new GaussianSampleGenerator();
            MersenneTwisterRNG rng = new MersenneTwisterRNG();
            ContinuousUniformGenerator ug = new ContinuousUniformGenerator(meanMin, meanMax, rng);
            ContinuousUniformGenerator ugStd = new ContinuousUniformGenerator(stdMin, stdMax, rng);

            //generate samples
            double[][][] genParams = new double[numClusters][dimension][2];
            for (int k = 0; k < numClusters; k++) {
                for (int d = 0; d < dimension; d++) {
                    genParams[k][d][0] = ug.nextValue(); //the d-th dimension of mean k
                    genParams[k][d][1] = ugStd.nextValue(); //the stddev of d-th dimension of mean k
                }
            }

            LOG.info("Successfully generated Sample Generator Seeds");
            LOG.info("samples seeds are: ");
            for (int k = 0; k < numClusters; k++) {
                StringBuffer vec = new StringBuffer("(");
                for (int d = 0; d < dimension; d++) {
                    vec.append(genParams[k][d][0] + ",");
                }
                vec.setCharAt(vec.length() - 1, ')');
                StringBuffer vecStd = new StringBuffer("(");
                for (int d = 0; d < dimension; d++) {
                    vecStd.append(genParams[k][d][1] + ",");
                }
                vecStd.setCharAt(vecStd.length() - 1, ')');
                LOG.info("mean: " + vec.toString() + " std: " + vecStd.toString());
            }
            gsg.setGenParams(numSamples, dimension, genParams, meanMin, meanMax);

            sp = gsg;

        } else {

            LOG.info("KMeans Clustering Input Dataset : from file " + datasetFile);
            // if dataset file is provided, use dataset file as input
            initialCentroids = new ArrayList<Vector>(numClusters);
            DatasetSampleReader dp = new DatasetSampleReader(datasetFile);
            sp = dp;
        }

        JobConf jobConf = new JobConf(getConf(), GenKMeansDataset.class);
        jobConf.set("mapred.output.compress", compress);
        jobConf.set("mapred.output.compression.type", compressType);
        jobConf.set("mapred.output.compression.codec", compressCodec);
        LOG.info("mapred.output.compression.codec=" + jobConf.get("mapred.output.compression.codec"));
        FileSystem fs = FileSystem.get(new Path(sampleDir).toUri(), jobConf);

        sp.setFileSystem(fs, jobConf);

        LOG.info("Generate K-Means input Dataset : samples = " + numSamples + "sample dimension" + dimension
                + " cluster num =" + numClusters);

        //delete input and output directory
        fs.delete(new Path(sampleDir));
        LOG.info("Start producing samples...");
        long sampleNum = sp.produceSamples(new Path(sampleDir), textOutput);
        LOG.info("Finished producing samples");
        // pick k initial cluster centers at random
        fs.delete(new Path(clusterDir));
        LOG.info("Start generating initial cluster centers ...");
        sp.produceInitialCentroids(numClusters, new Path(clusterDir, "part-00000"));
        LOG.info("Finished generating initial cluster centers");
        return 0;
    }

    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Configuration(), new GenKMeansDataset(), args);
        System.exit(res);
    }
}