Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.mahout.classifier.sequencelearning.hmm; import java.io.DataInputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.List; import java.util.Scanner; import com.google.common.base.Charsets; import com.google.common.collect.Lists; import com.google.common.io.Closeables; import org.apache.commons.cli2.CommandLine; import org.apache.commons.cli2.Group; import org.apache.commons.cli2.Option; import org.apache.commons.cli2.OptionException; import org.apache.commons.cli2.builder.ArgumentBuilder; import org.apache.commons.cli2.builder.DefaultOptionBuilder; import org.apache.commons.cli2.builder.GroupBuilder; import org.apache.commons.cli2.commandline.Parser; import org.apache.mahout.common.CommandLineUtil; import org.apache.mahout.common.commandline.DefaultOptionCreator; /** * Command-line tool for Viterbi evaluating */ public final class ViterbiEvaluator { private ViterbiEvaluator() { } public static void main(String[] args) throws IOException { DefaultOptionBuilder optionBuilder = new DefaultOptionBuilder(); ArgumentBuilder argumentBuilder = new ArgumentBuilder(); Option inputOption = DefaultOptionCreator.inputOption().create(); Option outputOption = DefaultOptionCreator.outputOption().create(); Option modelOption = optionBuilder.withLongName("model").withDescription("Path to serialized HMM model") .withShortName("m") .withArgument(argumentBuilder.withMaximum(1).withMinimum(1).withName("path").create()) .withRequired(true).create(); Option likelihoodOption = optionBuilder.withLongName("likelihood") .withDescription("Compute likelihood of observed sequence").withShortName("l").withRequired(false) .create(); Group optionGroup = new GroupBuilder().withOption(inputOption).withOption(outputOption) .withOption(modelOption).withOption(likelihoodOption).withName("Options").create(); try { Parser parser = new Parser(); parser.setGroup(optionGroup); CommandLine commandLine = parser.parse(args); String input = (String) commandLine.getValue(inputOption); String output = (String) commandLine.getValue(outputOption); String modelPath = (String) commandLine.getValue(modelOption); boolean computeLikelihood = commandLine.hasOption(likelihoodOption); //reading serialized HMM DataInputStream modelStream = new DataInputStream(new FileInputStream(modelPath)); HmmModel model; try { model = LossyHmmSerializer.deserialize(modelStream); } finally { Closeables.close(modelStream, true); } //reading observations List<Integer> observations = Lists.newArrayList(); Scanner scanner = new Scanner(new FileInputStream(input), "UTF-8"); try { while (scanner.hasNextInt()) { observations.add(scanner.nextInt()); } } finally { scanner.close(); } int[] observationsArray = new int[observations.size()]; for (int i = 0; i < observations.size(); ++i) { observationsArray[i] = observations.get(i); } //decoding int[] hiddenStates = HmmEvaluator.decode(model, observationsArray, true); //writing output PrintWriter writer = new PrintWriter( new OutputStreamWriter(new FileOutputStream(output), Charsets.UTF_8), true); try { for (int hiddenState : hiddenStates) { writer.print(hiddenState); writer.print(' '); } } finally { Closeables.close(writer, false); } if (computeLikelihood) { System.out.println("Likelihood: " + HmmEvaluator.modelLikelihood(model, observationsArray, true)); } } catch (OptionException e) { CommandLineUtil.printHelp(optionGroup); } } }