org.apache.mahout.classifier.naivebayes.BayesUtils.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.mahout.classifier.naivebayes.BayesUtils.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.classifier.naivebayes;

import java.io.IOException;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.regex.Pattern;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.mahout.classifier.naivebayes.training.ThetaMapper;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathFilters;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileIterable;
import org.apache.mahout.math.Matrix;
import org.apache.mahout.math.SparseMatrix;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.math.map.OpenObjectIntHashMap;

import com.google.common.base.Preconditions;
import com.google.common.collect.Maps;
import com.google.common.collect.Sets;
import com.google.common.io.Closeables;

public final class BayesUtils {

    private static final Pattern SLASH = Pattern.compile("/");

    private BayesUtils() {
    }

    public static NaiveBayesModel readModelFromDir(Path base, Configuration conf) {

        float alphaI = conf.getFloat(ThetaMapper.ALPHA_I, 1.0f);
        boolean isComplementary = conf.getBoolean(NaiveBayesModel.COMPLEMENTARY_MODEL, true);

        // read feature sums and label sums
        Vector scoresPerLabel = null;
        Vector scoresPerFeature = null;
        for (Pair<Text, VectorWritable> record : new SequenceFileDirIterable<Text, VectorWritable>(
                new Path(base, TrainNaiveBayesJob.WEIGHTS), PathType.LIST, PathFilters.partFilter(), conf)) {
            String key = record.getFirst().toString();
            VectorWritable value = record.getSecond();
            if (key.equals(TrainNaiveBayesJob.WEIGHTS_PER_FEATURE)) {
                scoresPerFeature = value.get();
            } else if (key.equals(TrainNaiveBayesJob.WEIGHTS_PER_LABEL)) {
                scoresPerLabel = value.get();
            }
        }

        Preconditions.checkNotNull(scoresPerFeature);
        Preconditions.checkNotNull(scoresPerLabel);

        Matrix scoresPerLabelAndFeature = new SparseMatrix(scoresPerLabel.size(), scoresPerFeature.size());
        for (Pair<IntWritable, VectorWritable> entry : new SequenceFileDirIterable<IntWritable, VectorWritable>(
                new Path(base, TrainNaiveBayesJob.SUMMED_OBSERVATIONS), PathType.LIST, PathFilters.partFilter(),
                conf)) {
            scoresPerLabelAndFeature.assignRow(entry.getFirst().get(), entry.getSecond().get());
        }

        // perLabelThetaNormalizer is only used by the complementary model, we do not instantiate it for the standard model
        Vector perLabelThetaNormalizer = null;
        if (isComplementary) {
            perLabelThetaNormalizer = scoresPerLabel.like();
            for (Pair<Text, VectorWritable> entry : new SequenceFileDirIterable<Text, VectorWritable>(
                    new Path(base, TrainNaiveBayesJob.THETAS), PathType.LIST, PathFilters.partFilter(), conf)) {
                if (entry.getFirst().toString().equals(TrainNaiveBayesJob.LABEL_THETA_NORMALIZER)) {
                    perLabelThetaNormalizer = entry.getSecond().get();
                }
            }
            Preconditions.checkNotNull(perLabelThetaNormalizer);
        }

        return new NaiveBayesModel(scoresPerLabelAndFeature, scoresPerFeature, scoresPerLabel,
                perLabelThetaNormalizer, alphaI, isComplementary);
    }

    /** Write the list of labels into a map file */
    public static int writeLabelIndex(Configuration conf, Iterable<String> labels, Path indexPath)
            throws IOException {
        FileSystem fs = FileSystem.get(indexPath.toUri(), conf);
        SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, indexPath, Text.class, IntWritable.class);
        int i = 0;
        try {
            for (String label : labels) {
                writer.append(new Text(label), new IntWritable(i++));
            }
        } finally {
            Closeables.close(writer, false);
        }
        return i;
    }

    public static int writeLabelIndex(Configuration conf, Path indexPath, Iterable<Pair<Text, IntWritable>> labels)
            throws IOException {
        FileSystem fs = FileSystem.get(indexPath.toUri(), conf);
        SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, indexPath, Text.class, IntWritable.class);
        Collection<String> seen = Sets.newHashSet();
        int i = 0;
        try {
            for (Object label : labels) {
                String theLabel = SLASH.split(((Pair<?, ?>) label).getFirst().toString())[1];
                if (!seen.contains(theLabel)) {
                    writer.append(new Text(theLabel), new IntWritable(i++));
                    seen.add(theLabel);
                }
            }
        } finally {
            Closeables.close(writer, false);
        }
        return i;
    }

    public static Map<Integer, String> readLabelIndex(Configuration conf, Path indexPath) {
        Map<Integer, String> labelMap = new HashMap<Integer, String>();
        for (Pair<Text, IntWritable> pair : new SequenceFileIterable<Text, IntWritable>(indexPath, true, conf)) {
            labelMap.put(pair.getSecond().get(), pair.getFirst().toString());
        }
        return labelMap;
    }

    public static OpenObjectIntHashMap<String> readIndexFromCache(Configuration conf) throws IOException {
        OpenObjectIntHashMap<String> index = new OpenObjectIntHashMap<String>();
        for (Pair<Writable, IntWritable> entry : new SequenceFileIterable<Writable, IntWritable>(
                HadoopUtil.getSingleCachedFile(conf), conf)) {
            index.put(entry.getFirst().toString(), entry.getSecond().get());
        }
        return index;
    }

    public static Map<String, Vector> readScoresFromCache(Configuration conf) throws IOException {
        Map<String, Vector> sumVectors = Maps.newHashMap();
        for (Pair<Text, VectorWritable> entry : new SequenceFileDirIterable<Text, VectorWritable>(
                HadoopUtil.getSingleCachedFile(conf), PathType.LIST, PathFilters.partFilter(), conf)) {
            sumVectors.put(entry.getFirst().toString(), entry.getSecond().get());
        }
        return sumVectors;
    }

}