Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.mahout.classifier.chi_rwcs.data; import com.google.common.base.Preconditions; import com.google.common.io.Closeables; import com.google.common.primitives.Doubles; import org.apache.commons.lang.ArrayUtils; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Writable; import org.apache.hadoop.io.WritableUtils; import org.apache.mahout.classifier.chi_rwcs.Chi_RWCSUtils; import org.apache.mahout.classifier.chi_rwcs.DFUtils; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.List; /** * Contains informations about the attributes. */ public class Dataset implements Writable { /** * Attributes type */ public enum Attribute { IGNORED, NUMERICAL, CATEGORICAL, LABEL; public boolean isNumerical() { return this == NUMERICAL; } public boolean isCategorical() { return this == CATEGORICAL; } public boolean isLabel() { return this == LABEL; } public boolean isIgnored() { return this == IGNORED; } } private Attribute[] attributes; /** * list of ignored attributes */ private int[] ignored; /** * distinct values (CATEGORIAL attributes only) */ private String[][] values; private double[][] nvalues; //NUMERICAL attributes only private double[][] minmaxvalues; /** * index of the label attribute in the loaded data (without ignored attributed) */ private int labelId; /** * number of instances in the dataset */ private int nbInstances; private Dataset() { } /** * Should only be called by a DataLoader * * @param attrs attributes description * @param values distinct values for all CATEGORICAL attributes */ Dataset(Attribute[] attrs, List<String>[] values, ArrayList<Double>[] nvalues, int nbInstances, boolean regression) { validateValues(attrs, values, nvalues); int nbattrs = countAttributes(attrs); // the label values are set apart attributes = new Attribute[nbattrs]; this.values = new String[nbattrs][]; this.nvalues = new double[nbattrs][]; this.minmaxvalues = new double[nbattrs][2]; ignored = new int[attrs.length - nbattrs]; // nbignored = total - nbattrs labelId = -1; int ignoredId = 0; int ind = 0; for (int attr = 0; attr < attrs.length; attr++) { if (attrs[attr].isIgnored()) { ignored[ignoredId++] = attr; continue; } if (attrs[attr].isLabel()) { if (labelId != -1) { throw new IllegalStateException("Label found more than once"); } labelId = ind; if (regression) { attrs[attr] = Attribute.NUMERICAL; } else { attrs[attr] = Attribute.CATEGORICAL; } } if (attrs[attr].isCategorical() || (!regression && attrs[attr].isLabel())) { this.values[ind] = new String[values[attr].size()]; values[attr].toArray(this.values[ind]); this.minmaxvalues[ind][0] = 0; this.minmaxvalues[ind][1] = values[attr].size() - 1; } if (attrs[attr].isNumerical()) { this.nvalues[ind] = new double[nvalues[attr].size()]; this.nvalues[ind] = Doubles.toArray(nvalues[attr]); this.minmaxvalues[ind][0] = getMinAttribute(this.nvalues[ind]); this.minmaxvalues[ind][1] = getMaxAttribute(this.nvalues[ind]); } attributes[ind++] = attrs[attr]; } if (labelId == -1) { throw new IllegalStateException("Label not found"); } this.nbInstances = nbInstances; } public double getMinAttribute(double[] values) { double min = values[0]; for (int i = 1; i < values.length; i++) { if (values[i] < min) { min = values[i]; } } return min; } public double getMaxAttribute(double[] values) { double max = values[0]; for (int i = 1; i < values.length; i++) { if (values[i] > max) { max = values[i]; } } return max; } public double[][] getRanges() { return minmaxvalues; } public int nbValues(int attr) { return values[attr].length; } public String[] getValues(int attr) { return values[attr]; } public double[] getNValues(int attr) { return nvalues[attr]; } public String[] labels() { return Arrays.copyOf(values[labelId], nblabels()); } public int nblabels() { return values[labelId].length; } public int getLabelId() { return labelId; } public double getLabel(Instance instance) { return instance.get(getLabelId()); } public int nbInstances() { return nbInstances; } /** * Returns the code used to represent the label value in the data * * @param label label's value to code * @return label's code */ public int labelCode(String label) { return ArrayUtils.indexOf(values[labelId], label); } /** * Returns the label value in the data * This method can be used when the criterion variable is the categorical attribute. * * @param code label's code * @return label's value */ public String getLabelString(double code) { // handle the case (prediction is NaN) if (Double.isNaN(code)) { return "unknown"; } return values[labelId][(int) code]; } /** * Converts a token to its corresponding int code for a given attribute * * @param attr attribute's index */ public int valueOf(int attr, String token) { Preconditions.checkArgument(!isNumerical(attr), "Only for CATEGORICAL attributes"); Preconditions.checkArgument(values != null, "Values not found"); return ArrayUtils.indexOf(values[attr], token); } public int[] getIgnored() { return ignored; } /** * @return number of attributes that are not IGNORED */ private static int countAttributes(Attribute[] attrs) { int nbattrs = 0; for (Attribute attr : attrs) { if (!attr.isIgnored()) { nbattrs++; } } return nbattrs; } private static void validateValues(Attribute[] attrs, List<String>[] values, ArrayList<Double>[] nvalues) { Preconditions.checkArgument(attrs.length == values.length, "attrs.length != values.length"); Preconditions.checkArgument(attrs.length == nvalues.length, "attrs.length != nvalues.length"); for (int attr = 0; attr < attrs.length; attr++) { Preconditions.checkArgument(!attrs[attr].isCategorical() || values[attr] != null, "values not found for attribute " + attr); } } /** * @return number of attributes */ public int nbAttributes() { return attributes.length; } /** * Is this a numerical attribute ? * * @param attr index of the attribute to check * @return true if the attribute is numerical */ public boolean isNumerical(int attr) { return attributes[attr].isNumerical(); } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (!(obj instanceof Dataset)) { return false; } Dataset dataset = (Dataset) obj; if (!Arrays.equals(attributes, dataset.attributes)) { return false; } for (int attr = 0; attr < nbAttributes(); attr++) { if (!Arrays.equals(values[attr], dataset.values[attr])) { return false; } } return labelId == dataset.labelId && nbInstances == dataset.nbInstances; } @Override public int hashCode() { int hashCode = labelId + 31 * nbInstances; for (Attribute attr : attributes) { hashCode = 31 * hashCode + attr.hashCode(); } for (String[] valueRow : values) { if (valueRow == null) { continue; } for (String value : valueRow) { hashCode = 31 * hashCode + value.hashCode(); } } return hashCode; } /** * Loads the dataset from a file * * @throws java.io.IOException */ public static Dataset load(Configuration conf, Path path) throws IOException { FileSystem fs = path.getFileSystem(conf); FSDataInputStream input = fs.open(path); try { return read(input); } finally { Closeables.closeQuietly(input); } } public static Dataset read(DataInput in) throws IOException { Dataset dataset = new Dataset(); dataset.readFields(in); return dataset; } @Override public void readFields(DataInput in) throws IOException { int nbAttributes = in.readInt(); attributes = new Attribute[nbAttributes]; for (int attr = 0; attr < nbAttributes; attr++) { String name = WritableUtils.readString(in); attributes[attr] = Attribute.valueOf(name); } ignored = Chi_RWCSUtils.readIntArray(in); // only CATEGORICAL attributes have values values = new String[nbAttributes][]; for (int attr = 0; attr < nbAttributes; attr++) { if (attributes[attr].isCategorical()) { values[attr] = WritableUtils.readStringArray(in); } } // only NUMERICAL attributes have values nvalues = new double[nbAttributes][]; for (int attr = 0; attr < nbAttributes; attr++) { if (attributes[attr].isNumerical()) { nvalues[attr] = DFUtils.readDoubleArray(in); } } minmaxvalues = new double[nbAttributes][]; for (int attr = 0; attr < nbAttributes; attr++) { minmaxvalues[attr] = DFUtils.readDoubleArray(in); } labelId = in.readInt(); nbInstances = in.readInt(); } @Override public void write(DataOutput out) throws IOException { out.writeInt(attributes.length); // nb attributes for (Attribute attr : attributes) { WritableUtils.writeString(out, attr.name()); } Chi_RWCSUtils.writeArray(out, ignored); // only CATEGORICAL attributes have values for (String[] vals : values) { if (vals != null) { WritableUtils.writeStringArray(out, vals); } } // only NUMERICAL attributes have values for (double[] vals : nvalues) { if (vals != null) { DFUtils.writeArray(out, vals); } } for (double[] vals : minmaxvalues) { if (vals != null) { DFUtils.writeArray(out, vals); } } out.writeInt(labelId); out.writeInt(nbInstances); } }